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ABSTRACT 

The goals of the research discussed in this report are: 

(1) to create new models of time-shared computer systems which 

include important features commonly found in real systems; 

(2) to insure that the formulations of, and solutions to, these 

models are relatively simple so that they may be used by 

designers and computer center managers; 

(3) to compare the behavior of these models with the behavior of 

more complex systems through simulation studies and empirical 

performance investigations of operational computers; and 

(4) to indicate Fane of the ways these models may be used to 

aid in the design, evaluation, and control of time-shared computers. 

Chapter 1 contains an introduction to some important features of current 

time-shared computers and a survey and review of many of the current approaches 

to their modeling.  Errors in three well known articles are discussed and cor- 

rected. 

Chapter 2 presents a number of new models which are extensions to, and 

modifications of, previous studies.  The new features include a more realistic 

treatment of overhead degradation and processing quantum length.  One of the 

models is a feedback queueing structure having two servers in tandem.  Hie 

results of each model include the mean value of the time required by the systc era 

ii 



to respond to a request.  In addition, exact and approximate expressions for 

expected response time conditioned on service request are developed and 

comparti with each other to study the accuracy of the approximations. 

Chapter 3 presents the results of a number of simulation experiments 

designed to examine the robustness of the analytic models.  The first model 

is similar to the first analytic formulation.  The next two simulations are 

based on the tandem queueing structure.  The last simulation includes a 

detailed model of the scheduling mechanism of TSS/360, an operational time- 

shared system marketed by IBM. 

Chapter 4 contains the results of three empirical studies of actual 

systems.  The first two were performed on TSS/360 and the third was performed 

on a Univac 1108 running with EXEC-8, a time-sharing operating system. 

Chapter 5 contains a discussion of sonie applications of the models 

developed in Chapter 2.  The first example is an application of the models 

to a design decision for the operating system of a multi-processor configura- 

tion.  The next illustrates the way the models may be used in performanca 

evaluation studies to examine possible overall system improvements arising 

from enhancements to subsystems.  The last example indicates how the models 

may be used in a dynamic control system to improve system performance. 

The first appendix presents a number of results which were used, but 

not derived, in earlier chapte.s.  The remaining appendices contain listings 

of major programs used in the research. 

Analytic models are but one of many tools available to those who want 

to analyze, measure, improve, and create better computing systems. One of 

the goals of this report is to help place this approach to system modeling 

into perspective as an important tool, not a panacea, for computer scientists, 

in 
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CHAPTER 1 

INTRODUCTION 

1.1  THE USE OF ANALYTIC MODELS - AN OVERVIEW 

"Everyone today knows that a queue is a waiting line.  If one 
also takes the trouble to examine the literature, which now is nr>ar- 
ing 2000 references on the subject, he might get the idea that all 
those contributing to the understanding of congestion phenomena are 
interested in doing something about them since, after all, queueing 
theory is concerned with relieving pain and saving tirm for all of 
us who have to wait.  Indeed, queues make a substantial demand on ar 
very lives by taking precious time from them. 

But the situation is getting worse in spite of the fact that 
In the past seven years the litexature of queueing theory has in- 
creased by half of its amount for the previous fifty years.  Improve- 
ments do not match the increase in theoretical developments.  Rarely 
has so rauch ingenuity been shown in tackling a variety of technical 
problems on paper by some of the ablest people in the world.  It may 
be that many additional good papers are waiting in queues for publica- 
tion.  But real life queues are still primitive, and indifference to 
waiting by both facility owners and resigned customers is a normal 
state of affairs." 

Thomas L. Saaty 

"The big problem with management science models is that managers 
practically never use them.  There have been a few applications, of 
course, but the practice is a pallid picture of the promise. Much of 
the difficulty lies in implementation and an especially critical aspect 
of this is the meeting between manager and model.  I believe that com- 
munication across this interface today is almost nil and that the situa- 
tion stands as a major impediment to successful use of models by managers 
 A model that is to be used by a manager should be simple, 
robust, easy to control, adaptive, as complete as possible, and easy to 
communicate with." 

2 
John D. C. Little 

The goals of the research discussed in this report are:  (1) to create 

new models of time-shared computer systems which include important features com- 

monly found in real systems; (2) to insure that the formulations of, and solutions 

1 
Saaty, T.,  Seven More Years of Queues, A Lament and A Bibliography", Naval 

Research Logistics Quarterly. Vol. 13, No. 4, December, 1966, p. 447. 

2 
Little,   John D.   C,   "Models and Managers:     The Concept  of  a  Decision Calculus", 

Management Science.   Vol.   16,   No.   8,  April  1970,  p.   B-466. 



to,these models are relatively simple so that they may be used by designers 

and computer center managers; (3) to compare the behavior of these models 

with the behavior of more complex systems through simulation studies and 

empirical performance investigations of operational computers; and (4) to 

indicate some of the ways these models may be used to aid in the design, 

evaluation, and control of time-shared computers. The quotations from Saaty 

and Little indicate that often theoretical results of operations research 

studies are not applied to practical situations. The Institute of Management 

Science recently changed the name (and the focus) of one of its periodicals 

to Interfaces in an attempt to bridge this implementation gap. 

Two reasons why computing system models often remain unused are that 

articles describing them seldom contain discussions about their validity 

for describing observed phenomena and that often the results are so complicated 

that users are not willing to invest the time needed to understand the model 

and its behavior.  The main purpose of descriptive models is to account for 

observed phenomena of physical systems. The complexity of most actual sys- 

tems requires that any particular model address itself to a limited and con- 

strained subset of state variables.  Thus each model is an abstraction of 

a particular set of important features of interest to an analyst or designer. 

Simplifications required to make an abstraction manageable by a particular 

solution technique limit both scope and power.  Since analytic models are 

characterized by symbolic formulations and deductive derivations, they require 

many simplifying assumptions.  The consequences of these assumptions must be 

explored before one applies the model. 

For the study of computing systems there are two other tools which are 

related to analytic modeling: 



(1) the construction of large, detailed, simulations 

(2) the design and implementation of empirical investigations 

All three methods have areas of applicability which intersect.  For example, 

analytic models often expand to the point where a large amount of computa- 

tional effort is required to calculate results. Often a point is reached 

when a modest simulation may be a more cost effective approach. Large simula- 

tions may eventually grow into system prototypes, and enpirical investiga- 

tions can provide insight required to design better models. Analytic models 

often indicate which of many possible parameters or subsystems are good 

candidates for more detailed study via simulation and experimentation. 

Another important use for analytic models is as a reference system for statis- 

tical analysis of simulation results.  For example, Gaver (1969) presents 

evidence showing how the classic Monte Carlo technique of control variates, 

which makes use of an approximate model, can improve simulation efficiency 

by reducing the variance of parameter estimates from simulation experiments. 

To be useful, analytic formulations should include the essential features 

of a system, or subsystem, and should have solutions that are readily under- 

standable.  The necessity of spending excessive computer effort to solve 

for each parameter value of an analytic model casts doubt upon its usefulness 

since simulations typically can handle more detailed cases with similar effort. 

The conclusion from these considerations is that analytic models, simulation 

studies, and empirical investigations should complement one another in the 

study of computing systems.  The new models developed in the next chapter 

add to the tools available for analytic performance analysis. 

Section 1,2 contains an introduction to some important features of 

time-shared computer systems, and Section 1.3 contains a survey and review 



of many of the current approaches to their modeling.  Errors in three well 

known articles are discussed and corrected. 

Chapter 2 presents a number of new models which are extensions to, and 

modifications of, previous studies.  The new features include a more realistic 

treatment of overhead degradation and processing quantum length. One of the 

models is a feedback queueing structure having two servers in tandem.  The 

results of each model include the mean value of the time required by the sys- 

tem to respond to a request.  In addition,exact and approximate expressions 

for expected response time conditioned on service request are developed and 

compared with each other to study the accuracy of the approximations. 

Chapter 3 presents the results of a number of simulation experiments 

designed to examine the robustness of the analytic models.  The first model 

is similar to the first analytic formulation.  The next two simulations are 

based on the tandem queueing structure.  The last simulation includes a 

detailed model of the scheduling mechanism of TSS/360, an operational time- 

shared system marketed by IBM. 

Chapter 4 contains the results of three empirical studies of actual 

systems.  The first two were performed on TSS/360 and the third was performed 

on a Univac 1108 running with EXEC-8, a time-sharing operating system. 

Chapter 5 contains a discussion of some applications of the models 

developed in Chapter 2.  The first example is an application of the models to 

a design decision for the operating system of a multi-processor configuration. 

The next illustrates the way the models may be used in performance evaluation 

studies to examine possible overall system improvements arising from enhance- 

ments to subsystems.  The last example indicates how the models may be used 

in a dynamic control system to improve system performance. 



The chapter concludes with an evaluation of the techniques and points to 

future work, 

1.2  IMPORTANT FEATURES OF TIME-SHARED SYSTEMS 

"It is now possible for users 
to be connected by a pair of wires to a powerful computer system 
that ~iay be in the next room or may be many miles away.  All users, 
wherever they are, have instant access to the computer, and can e:- 
pect a response to their demands that is limited only by the fact that 
the computer must share its time between all the users.  The develop- 
ment of such systems is, however, still in its infancy, and much develop- 
ment of hardware and software must take place before users can be given 
everything that they have a right to demand.  There is no doubt that, 
in a few years time, the best of the currently operating systems will 
appear very primitive indeed." 

M. V. Wilkes 

Time-Sharing Computing Systems, by Wilkes (1968), is a good introduction 

to the hardware and software features included in many time-shared structures. 

It will provide a good background to the non specialist. 

Figure 1.1 illustrates the basic features of many time-shared systems. 

Users submit tasks from terminal devices to the system. A task may be con- 

ceptualized as a job step which requires the use of a number of system re- 

sources to be completed.  The computer's operating system controls and al- 

locates these resources, such as primary and secondary memory, channels, and 

processors, so that users requiring small amounts of resources will get a 

rapid response from the system.  In this report response time will be defined 

as the elapsed time from task submittal to task completion.  If a particular 

task keeps a resource such as the central processor occupied for a time period 

that would seriously affect the response of other jobs in the system, it is 

interrupted and placed in the system of queues while another task uses the 

resource. When the system has finished with all of the work associated with 

3 
Wilkes, M. V., Time-Sharing Computer Systems. American Elsevier Publishing 
Company, Inc., New York, 1968, p. 2. 
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the task it gives the user an appropriate output message.  Using the con- 

tent of this message, the user formulates his next job step, and in »"his 

manner cyclic interactions continue until the user leaves the system. A 

major goal of such designs is to encourage users to interact with data and 

programs.  If interaction is very slow or cumbersome, effectiveness will 

diminish.  Short requests usually receive high priority through an interrupt 

scheme that allows the central processor to switch to a new task whenever 

the active one is delayed or exceeds a maximum processing threshold called 

a quantum interval.  In this way the central processor divides its capacity 

among tasks awaiting execution. When a user submits a request that will 

require minutes, or even hours, of central processing time, interactive 

response should not be greatly affected.  The user with a long task must 

realize that due to resource sharing with interactive requests, his job will 

take longer on a shared system than on a batch system of equal capacity. 

A "good model" must predict both fast response time for short jobr, and response 

degradation for long ones. 

Another observed phenomenon of time-sharing is non-linear degradation 

of response time as a function of system load.  Systems can provide good 

response only within a limited range of input demand.  If demand exceeds 

this range, response time deteriorates rapidly.  Because of this degradation, 

many systems arbitrarily limit the number of users who are allowed to inter- 

act simultaneously with the computer.  Non-linear response to increasing de- 

mand is another physical observation which should be a derived consequence 

of a "good model". 

Computing structures allowing frequent task switching and quanta inter- 

ruptions add overhead time to that already present in the basic operating 

system.  This addition arises because of many bookkeeping functions required 
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to maintain status lists of tasks and shared resources.  A "good model" of 

time-sharing systems shorld explicitly considei overhead degradation. 

The random nature of actual quantum intervals is often ignored in analytic 

models.  Input/output requests, paging demands in systems with virtual 

memory, supervisor calls, and external interrupts are causes of quantum 

ends, in addition to task completions and quantum overruns that combine to 

make actual quanta random.  The following statistics from a user session at 

Carnegie-Mellon University on an IBM 360/67 demonstrate that the IBM time- 

sharing monitor, TSS, processes interrupts occurring most frequently for 

reasons other than task completion or excessive central processor utilization 

during an interaction.  Figure 1.2 is a state transition diagram illustrat- 

ing the results of a probe of a typical user session. 

Numbers on the figure are frequencies of events. During this 16 minute 

probe, 927 separate interactive job steps generated 30,856 interruptions to 

normal processing, an average of approximately 33 interrupts per interaction. 

Only 367, or about one percent, of these interrupts were processing quantum 

overruns. A random event such as a reference to part of a program not cur- 

rently in core (a page fault) triggered the vast majority of quantum aborts. 

The software monitor used to gather these statistics creates an output 

record for every internal system event of interest.  The analyst initializes 

a particular probe by informing TSS which events are to be traced, and the 

system saves the resulting output on magnetic tape for later statistical analysis, 

Deniston (1969) describes the design and performance characteristics of this 

type of measurement technique. 

The preceding review summarized a number of important features of opera- 

tional time-shared systems.  The next section indicates the kinds of struc- 

tures currently in use to model them.  The highly variable nature of time-sharing 
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interactions indicates that probabilistic methods should form a basis for 

system analysis. Queueing formulations often become very complicated even 

though the models are easy to describe.  Thus one must carefully select 

areas to study within a system or queueing theory will be of little help. 

1.3 A SELECTED REVIEW OF ANALYTIC TIME-SHARING MODELS 

Time-sharing models have grown at a rate paralleling thar of actual sys- 

tems. McKinney's (1969) survey and annotated bibliography, containing 35 

references, categorizes most contributions through 1969. An earlier paper 

by Estrin and Kleinrock (1967) presents a useful taxonomy of analytic models 

and a review of simulation and measurenent studies of several systems.  These 

references are excellent introductions to the general area of Lime-sharing 

models.  The more limited goal of this section is to trace the development 

of models upon which the work of Chapter 2 depends. 

Figure 1.1 may be used as a conceptual framework to classify many models. 

The user subsystem generates tasks for the computing subsystem.  There are 

two common ways of modeling the input process.  The most common approach 

is to assume that requests arrive at the computer according to a homogeneous 

4 
Poisson process with arrival rate X jobs per unit time.  This assumption is 

equivalent to stating that interarrival times between requests have an ex- 

ponential distribution with mean l/x time units.  This model of the arrival 

process also assumes that the input rate is independent of the behavior of 

the computer subsystem.  The common queueing terms for this assumption are 

the "exponential-, infinite source" input, or the "Poisson source". 

The other common approach to the arrival process is to assume a finite 

number of independent users, each of whom submits a task and waits until it 

4 ■ 
Section 2.2 contains a summary of many of the properties of a Poisson process, 
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has been satisfied before submitting another. For this case "think-time", 

commonly defined as the interval between response to one task and submittal 

of the next, for each of the users, has an exponential distribution with 

mean l/x time units.  For this "finite source" model the combined arrival 

rate to the computer depends upon the number waiting for service since a user 

may submit only one task at a time.  This structure is self balancing since 

the input rate decreases as the system becomes overloaded. 

The exponential distribution is central to most analytic time-sharing 

models. If time between events is distributed exponentially, and an event 

has not occurred for t time units, the time remaining until the next event 

has the same exponential distribution as the original inter-event interval. 

This manoryless, or Markov, property permits many simplifications in model 

structure because state information concerning elapsed time since a prior 

event is unnecessary. 

Four empirical systan studies support the approximate exponential shape 

of interarrival time distributions, but the measurements usually have higher 

variance than predicted by the exponential (Totschek, 1965; Coffman and Wood, 

1966; Bryan, 1967; Scherr, 1967). Although the exponential does not fit the 

data exactly, the additional complexity introduced by allowing general inter- 

arrival distributions is not justified for models having simple results as 

5 
a major goal.  Greater input variance causes slightly increased system congestion. 

There are also two common ways of modeling the basic service philosophy 

of a time-sharing organization.  The first, and more realistic, is the "round 

robin model" in which one explicitly considers a quantum interval during 

which a single task receives all the power of the central processing unit. 

See Saaty (1961), Chapters 9 and 10, for formulations of queueing systems 
having generalized input processes. 
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If the task does not terminate naturally during this interval, it is inter- 

rupted and forced to rejoin the queue of waiting users while some other task 

gains access to the processor.  Some models include priority levels in the 

queueing subsystem. The terms "processor-shared" or "pure time-sharing" 

denote the second basic service approach which may be viewed as a limiting 

case of the first method.  At each instant, the fixed processor capacity, C 

instructions per time unit, is uniformly shared by all active tasks.  Each 

of M active jobs receives C/M units of computing power per unit time.  In 

the limit, as the quantum interval approaches zero, the finite quantum, round 

robin model becomes the processor-shared system. 

One of the early works to consider a feedback qurueing structure similar 

to Figure 1.1 was the paper by Takacs (1963).  His problem arose in studies 

of the theory of telephone traffic, and there is no mention of either time- 

sharing or computer system design.  His formulation includes an infinite ex- 

ponential source, a finite and random quantum interval, and total service 

times which are the sum of a geometrically distributed number of quanta each 

of which is drawn from the same generalized distribution.  He solved this 

model for the expected number of ta^ks in the system and for the unconditioned 

moments of response time for a rt.^st.  (An interesting aspect of the study 

was the use of a symbolic differentiation computer program to find the complicat 

ed expression for the second moment of response time.) 

Chang (1966) realized the applicability of the Takacs work to the time- 

sharing domain and redefined a number of parameters to be consistent with 

computer terminology.  He extended the original model to consider a random 

selection of the quantum distribution, but he solved the extension only for 

6Coffman and Kleinrock (1968) summarize many of the models of these service 

disciplines.' 
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the generating function of the number of queued tasks at the end of a quantum 

or at the instant of a job departure.  Neither author calculated mean response 

conditioned on the amount of service requested.  This latter quantity indicates 

how a time-sharing design will respond to tasks requiring different amounts 

of computing time.  Section 2.3  presents a logical extension of the Takacs 

work in which random overhead is added to the quantum interval and mean 

response conditioned on service is calculated. 

Kleinrock (1964) first calculated expected response conditioned on 

service for a simple model.  He constrained events to occur only at discrete 

points of time corresponding to constant service quanta of length Q. At 

the end of each interval a new task enters the first-in-first-out (FIFO) 

queue with probability XQ; the job being served, if the system is not empty, 

either completes service (probability l-a) or rejoins the end of the queue 

(probability a); and the processor takes the job at the head of the queue 

for a service interval of length Q.  Call the processing requirement of a job, 

V. A job having V = nQ units is forced to join the end of the queue n times 

before its processing is complete.  Kleinrock calculates the steady state 

expected number of tasks in the system, E(M) as given in equation (1.1). 

He also calculates the conditional response time for a job requiring nQ units 

of processing, E(R|nQ), and shows that a good approximation to the latter 

result is the simple formula of equation (1.2). 

(1.1)  E(M) = •^- 
i -a- XQ 

(1.2)  E(R|nQ) «nQ(l +^2_) 
1-cr-XQ 

In a later paper Kleinrock (1967) considers the limiting case (as Q -♦ 0) 

of the above model.  For this processor-shared case the arrival process 
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becomes the infinite exponential source with rate X jobs per unit tinie^ and 

the service, requirement for each task becomes an exponential random variable 

with mean l/u time units per job.  liquation (1.3) Is hi,r. result for expected 

response time conditioned on a processing need of V time units.  In Che con- 

cluding sections of the paper Kleinrock further extends his earlier work 

by considering priority classes in the queueing structure. 

(1.3)  E(R|V) " V'U/(U-A) 

A series of four similar articles closely related to Kleinrock's work 

began with a paper by Shemer in 1967,,  In these models computing requests 

come from an infinite exponential source having rate \  jobs pei unit time. 

Processing requests are exponentially distributed random varial les having an 

expected value of l/u time units.  Mach request, joins the end of a first-in- 

first-our: queue upon arrival.  Each task receives a maximum process irv quantum 

interval of Q time units, where Q is a constant.  If a request completes 

service before it;, time limit expires, it leaves the system and the processor 

immediately begins work on the task at the head of the queue.  If i job can- 

not complete service during a quantum, it is Interrupted and forced to join 

the end of the queue while the processor v/orks on the next waiting task. 

Figure 1.3 Illustrates this specific form of the general structure of Fi  -ure 

1.1. 

For this model, the expected number of tasks in the system, and the 

expected unconditional response time, are identical to the results for the 

classical Poisson source exponential service, single channel queueing 

system (M/M/l).   Shemer (1967) uses these facts in his derivation of expected 

7 
In queueing literature, models are often classified using Kendall's notation: 

a/s/n where "a" denotes the type of arrival, "s" the type of service, and "n" 
the number of service channels.  In the example above "M" denotes Markov, or 
exponential, arrival and service. 
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response time conditioned upon a particular task's service request, but 

he makes two errors. Using expected value arguments he derives a recursive 

expression for the mean time spent in queue waiting for service quantum i as 

a function of the expected wait for servica quantum (i-1).  The derivations 

are clear to follow and correct except for i=l and i=2. The two properties 

of the model that Shemer does not treat correctly are: 

1.  The remaining time, Q , of a quantum interval in progress, if 

the processor is not idle, when a new task enters the system 

has a distribution that is different from the distribution of 

a full quantum interval. 

2.  The conditional probability that a task will return for more 

service, given that it has already completed part of a service 

quantum, is different from the probability that a task just start- 

ing a quantum interval will return for additional processing„ 

These errors propogate through all values of i and distort the final result. 

Section 2.2 contains a discussion of the properties of a quantum in progress 

when a new task arrives and Appendix A contains a correct derivation of this 

model with a slight extension.  Shemer's paper concludes with extensions to 

the basic model involving priorities, 

Coffman and Kleinrock (1968) use a slightly more complex approach to 

study the same model in a paper which also contains a number of interesting 

extensions including priority scheduling policies. Although both articles 

were published in the Journal of the Association for Computing Machinery, 

the latter paper did not indicate the errors in the earlier work.  Coffman 

and Kleinrock made a small mistake in the derivation of the second moment 
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of the processing time actually received by a task during a quantum.  Their 

result is distorted also since this intermediate formula appears in the 

final expression. Appendix A presents the corrected result lor fhe second 

moment of a quantum interval of this type. 

Adiri and Avi-Itzhak (1969) solved a model similar to Figure 1.3 with 

the addition of a constant delay, d, before every processing quanta.  This 

extension adds realism to the basic model, and complicates the solution. 

The delay represents constant -verhead degradation, or set-up time, required 

by the processor to switch from one task to the next.  The added complexity 

of the solution arises from the fact that the total processor time required 

by a task is no longer exponential. A task needing V units of processing, 

where V is an exponentially distributed random variable, now requires 

V + [V/Q]«d processing units where [X] denotes the largest integer greater 

than or equal to X.  The results for the expected number of tasks in the 

system and the expected unconditional response time are now identical to 

the exponential source, general service time, single channel queueing system 

(M/G/1).  The authors employ sophisticated mathematical techniques involving 

complicated Laplace transforms and generating functions to solve for response 

time conditioned on service request.  The solution is correct and reduces to 

the results of Shemer (1967) and Coffman and Kleinrock (1968) when the delay, 

d, is set to zero, and when the corrections noted in the preceding paragraphs are 

incorporated in the earlier derivations.  To derive expected value of response 

conditioned on service, one may use expected value techniques employed by the 

previous authors rather than the more involved methods used by Adiri and 

Avi-Itzhak.  Since these simpler techniques are the basis for the derivations 

in the following chapter. Appendix A contains a proof that the results from 

the two methods are identical. 
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Rasch (1970) studies the model of Figure 1.3 and then extends it in 

almost the identical manner as the work described in the preceding paragraph. 

He adds a constant delay d after, rather than before, each processing quantum. 

His approach contains a major mathematical error not present in any of the 

other three works. While deriving the expression for expected waiting time 

in the queue before receiving service quantum i, he mistakenly presumes that 

the mean value of all waits after the first will be the same. Although the 

differences are small, and one may wish to make this simplifying assumption 

to achieve simpler final expressions, one must realize (as the other authors 

did) that the wait for service quantum i depends in a non-trivial way upon 

the wait for service quantum(i-l). 

The preceding paragraphs place into perspective previous studies that 

are in the direct line of  development of the derivations of Section 2.3 and 

2.4. The work of Section 2.5 has different historical roots since it is a 

finite exponential source, processor-shared, model including overhead loss 

as a function of system state.  Early work in this area is categorized in 
Q 

queueing literature as "the machine interference" problem.  Sherr (1967) 

recognized the applicability of this work to the time sharing domain and 

presents an exponential, finite source, processor-shared model. He compares 

his results with a simulation and with measuremenus ».aken from the CTSS 

time sharing system at MIT.  To approximate an overhead loss of X percent, 

he simply reduces the capacity of the processor by X percent. 

Attempts to solve the structure of Figure 1.3 with modifications of 

a fir-' ; number of exponential input terminals and a constant delay d before 

each quanta started with the paper by Coffman and Krishnamoorthi (1964). 

^ the book by Saaty (1961), p es 323-333, for an excellent review of re- 

sults of classic work on machine interference. 
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This work was expanded by Krishnamoorthi and Wood (1966) and then further 

refined with the correction of an error by Adiri and Avi-Itzhak (1969b). 

Results of these studies are complicated in both the methodologies and the 

form of the expressions. Greenberger (1966) made a number of mathematical 

approximations to achieve simpler, although approximate, results. Applying 

a cost function to service delays he investigates the optimal size for the 

quantum parameter Q.  In all of these studies overhead delay, d, and maximum 

quantum size, Q, are constants and service and input distributions are ex- 

ponential. 

A number of other papers present surveys of analytic models concerned 

with features such as externally assigned priorities and service disciplines 

which are dependent on system state.  In addition to the two surveys referenced 

at the beginning of this section, and the papers already discussed, the inter- 

ested reader is directed to studies such as Coffman (1966), Coffman and Muntz 

(1969), and Schräge (1967) and (1969). 

A different modeling approach is based upon the work of Jackson (1963) 

and Gordon and Newell (1967).  In these models tasks circulate among a 

number of service stations.  Buzen (1971) applies these methods to multi- 

programming systems, and Moore (1971) applies them to time-sharing designs. 

Courtois (1971) applies results of Simon and Ando (1961), concerning the 

dynamics of nearly decomposable systems, to queueing systems.  His methods 

significantly simplify the numerical work required to solve hierarchical 

queueing networks. 

Chapter 2 contains a number of models which extend the work reviewed 

in this section.  The aim of these derivations is to include as many fea- 

tures of real systems as possible in model formulations which lead to straight- 

forward results. 
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CHAPTER 2 

NEW ANALYTIC MODELS OF TIME-SHARED COMPUTER SYSTEMS 

2.1  INTRODUCTION 

The analytic models presented in this chapter are the end products 

of compromises designed to include a number of important characterisLics 

of current time-shared computer systems often ignored in other analytic 

models, but still to insure that the results are easy to understand and 

compute.  They focus on the mean time required for a time-sharing system 

to respond to a user's request. 

The survey of the analytical modeling literature in the previous 

chapter revealed that overhead and Ewapping times are often neglected 

in models of time-sharing.  If considered, they appear almost exclusively 

as constant delays either before or after each service interval.  Simi- 

larly, even though most time-sharing systems have many different quantum 

sizes based on a job's priority, its recent history, and the system state, 

models in which the quantum interval is a parameter usually consider it 

to be a constant and not a random variable.  Results of many of these 

models appear as Laplace transforms which often require numerical inver- 

sion.  Transforms are also used directly to obtain moments of distribu- 

tions by differentiation, but often the results are very complicated. 

(See the following papers for illustrations of these statements:  Greenberger, 

1966, Krishnamoorthi and Wood, 1966; Coffman and Kleinrock, 1968; Adiri 

and Avi-Ttzhak, 1969, Rasch, 1970.) 

The new models presented in this chapter extend previous work.  The 

first formulation includes features such as: 
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1. a random part of each quantum interval is required for 

overhead functions 

2. the service/execution segment of each quantum is a random variable 

3. the total service request for a task may have any distribu- 

tion which can be represented as a geometrically distributed 

sum of independent random variables, each of which has the 

same arbitrary distribution 

The second model is a tandem service structure which models the multi- 

programming aspects of many systems by representing the behavior of a 

task as a random number of cycles through both a central processor and 

an input/output subsystem.  Processing may occur simultaneously in each 

subsystem.  The third model is a finite source system having a processor- 

shared service facility with overhead degradation which la a function of 

the state of the system. 

The followiiLg symbols will be used in a standard manner throughout 

the report.  Other notation will be introduced as needed in each section. 

P(«)   ■ the probability of event (•) 

P(G|H) = the conditional probability of event G given event H 

F (t)  = the cumulative probability distribution function of a 
random variable X 

= P(X <■  t) 

= f  dF (t)  (the Stieltjes integral) 
-00    X 

fx(t)  = the density function of a continuous random variable X 
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E(X)   = the expected value of a random variable X 

= J'l tdFx(t) 

E(X|Y) = the conditional expectation of X given Y 

E(g(X)) ■ jj|(t)dl (t) ■ the expected value of a function g(-) 
of a random variable X 

VAR(X) = the variance of a random variable X 

= E((X - E(X))2) 

SD(X)  = the standard deviation of a random variable X 
1 

= (VAR(X))7 

1, (s)  ■ the Tjaplace transformation of a non-negative random 
variable X 

-sXx ,.«> -st 
= E(e-SA) = f e ai-dFY(t) 

-1 0      X 

L     (t) ■ the inverse Laplaco transforroation 

Before proceeding to the derivation of the models, the next section will 

review some important properties about the Poisson process that are used 

throughout the chapter. 

2.2  THE POISSON PROCESS 

This section contains a brief summary of a number of well known 

properties of the Poisson process which are used throughout the field ol 

queueing theory.  These results are usually scattered throughout texts. The 

following books contain good discussions:  Feller (1957); Saaty (1961); 

Parzen (1962); and Conway, Maxwell, and Miller (1967).  The following 

presentation borrows extensively from the material contained in Chapter 8 

of Conway, Maxwell, and Miller (1967).  This text also contains an excel- 

lent bibliography for the reader interested in pursuing the subject in 

greater depth. 
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2.2.1 Process Definition 

A counting process is usually defined as an integer-valued process 

[N(t), t 2: 0] which counts the number of points occurring in an interval, 

these points having been distributed by some stochastic mechanism.  Here 

the points represent the times at which events of a specified character 

occurred.   Consider events occurring in time on the interval 0 to », 

and for t > 0 define N(t) to be the number of events that have occurred 

in the interval 0 to t (the interval is open at 0 and closed at t).  Let 

N(0) = 0. Then,for a Poisson process, whatever the value of N(t), the 

2 
probability that during (t, t+h) an event occurs is X-h + o(h ), 

2 
and the probability that more than one event occurs is o(h ).  The term 

o(h2) denotes a quantity which is of smaller order of magnitude than h 

so that o(h2)/h tends to zero as h tends to zero.  The Poisson process 

has increments between events which are independent and stationary in time, 

The following equations are derived consequences of the process 

definition. 

,.  ^n -Xt 
(2.1) P(N(t) - n) - U  „,e ,  n=0,l,2,... 

(2.2) E(N(t)) = X.t 

1 

(2.3) SD(N(t)) = (X-t)2 

If A is the random time between two successive events, then: 

(2.4)    P(A St)- l-e'U,  t s 0 

= 0    ,  t < 0 

See Parzen (1962), p. 117, 
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(2.5) E(A) = 1/X 

(2.6) SD(A) = 1/X 

2.2.2. Memoryless Property 

A consequence of the postulate that the probability of an event 

during (t, t+h) is independent of previous process history is that the 

time until the next event, given that no event, has occurred for y time 

units, Is independent of y. 

(2.7) P(A > y+t|A > y) = P(A > t) = e"U, t > 0, y > 0 

Another interesting property of the Poisson process is that if n events 

occur in an interval (0,t), then the n event times are independently 

and uniformly distributed over the interval (0,t) 

2.2.3. Branching and Aggregation of Poisson Processes 

Consider a Poisson stream of events with rate \  which is randomly 

split into k different streams in which the probability that path i will 

be taken is p..  If the output paths are chosen independently, then the 

th 
i  path is a Poisson stream with rate Xp.. 

k 

E p - 1 
1-1 i 
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Conversely,  if k independent Poisson streams,  having rates >1,X2,...Xk, 
k 

are aggregated, the resulting stream is Poisson with rate X = Z X.. 

h 

V 
3 .   y 

V 

2.2.4 Remaining Service Time Distribution 

Let jobs arrive at a server from a Poisson source.  Given that a 

new job arrives while another one is being served, the remaining service 

time, Q , is defined as the time interval from the arrival of the new 

job until the service completion of the one already there.  If service 

intervals, X, are random variables with distribution function ^(t)» 

then Conway, Maxwell, and Miller (1967) derive the following two results 

2 
about Q , the remaining service time: 

(1 - F (t))dt 

(2.8)  P(t SQr ^ t + dt) =  ^5  ,  0 ^ t < «> 

kfl 

<2-')  '«fr - (W) E(X) '  k=1-2 — 

r iv   ■,% '2.5) äives the probability that Q will be in a small interval, 

and (2.9) gives the kth moment of Qr.  The following diagram Illustrates 

Conway, Maxwell, and Miller (1967), p. 146-147.  Appendix A contains 
derivations of equations (2.8) and (2.9).  The method used to derive 
(2.8) differs from the approach of Conway, Maxwell, and Miller. 
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the relationship between x anH n   TU~  -  i^ 
P ecween X, and Qr.  The results are conditioned on there 

being a Job in service when a new one arrives. 

Service interval of length X 

. time 

Arrival  time X 
of new job V 

Remaining service 
interval of job  in 
progress when new 
job arrives 

2.2.5    Output of an M/M/1 quPii^ 

If the a„l„al „ . sln8le ..„„ q^iag ^^ ^ ^^ ^ 

race X. M  che servlce ls ^Mntul „^ ^ ^ > ^ ^ ^ ^ ^^ 

.c-duHng procedure Is lnde?endw of ^ ^ ^ ^^^^^ ^^ o£ ^ 

jobs,  th.n ln  the steady state  tha departure  ^^^^^ ^^  ^^^^^^ 

«.tribute exp„„mtlal varlable8 wlth p.rtm>t<t x_     ^ other ^^^   ^^ 

This r..ult may be extended to the ^^^^^ birth_death ^^ ^ 

thus It als» applies t(> M/,M/il systeins_ 

2-2-6    Hasults  fnr M/c/l 911».,» 

If tha input process to a slngie server queueing syste™ is Poisson 

"1th rate X. if the processing time, X, has a general distributio„ „Uh 

-an l/u. an. lf the trafflc  lBe.njUy p . ^ ^ u      ^ ^^  ^^ ^ 

•n, service discipline thac  i, independent of   the processing tlmes of  ehe ]ob. 



-27- 

(such as first-in-first-out), the following results are steady state values 

for important system parameters. 

(2.10) E(flow time through queue and server) = E(R) 

2-E(X)«(l-p) + X-E(X2) =       X.E(X
2) 

2-(l-p) MX; ^ 2.(l-p) 

(2.11) P(server is idle) = 1-p 

Equation (2.10) is the classic Pollaczek-Khintchine formula.  The expected 

number of jobs in the queue and in the server is related to this result by (2.12), 

Little's theorem (1961).  These results show that different processing time 

independent scheduling rules have no effect on the mean number in the system, 

the mean response time, and the probability that the server will be idle. 

Scheduling rules which are independent of processing time do have effects 

on the response times of individual jobs, but not on the expected value of 

response for all jobs. 

(2.12) E(number of tasks in M/G/1 system) = X'E(R) 

2.3 A TIME-SHARING MODEL WITH RANDOM QUANTA AND RANDOM OVERHEAD - TSMODl 

The model in this section has the following basic structure: a 

Poisson source of tasks; a random delay drawn from a general distribution 

representing overhead loss due to quantizing; a random processing quantum 

drawn from an arbitrary distribution; and feedback to a round robin, 

first-in-ftrst-out queue. The independent variables are:  speed of the 

processor; interrupt probability; and the probability distributions of 

quantum requests, overhead delays caused by each interrupt, and interarrival 
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times between requests.  The dependent variable is the expected value of 

the time required by the system to service a request. Although analysis 

becomes complicated, the directly applicable result is sijnple.  This model 

is useful since it retains simplicity while including a number of essential 

parameters !;or time-shared systems.  Figure 2.1 illustrates the structure 

of the model. 

2.3.1 Definitions and Model Formulation 

Define the following symbols for use in the model. 

C = a constant equal to the computer processing rate expressed 
in instructions per unit time 

I    =  the probability that a task has been completed after an 
interrupt 

W = the random number of instructions executed during a pro- 
cessing quantum before an interrupt occurs 

wi = the i  moment of W 

V = a random variable denoting the number of instructions 
required by a task for one complete interaction 

.  .th 
vi = the i  moment of V 

D = a random variable representing the overhead delay of an 
interrupt 

di = the i  moment of D 

M = the random number of tasks in the queue and in the server 

R = response time, a random variable denoting the elapsed 
time from task submittal to task completion (queue wait- 
ing time plus service and overhead time) 

N = the number of interrupts experienced by a task during 
the execution of its V instructions 

A = a random variable expressing the interarrival time between 
tasks requesting service from the system 

Q = the random length of a auantum interval which is the sum 
of a service segment, W/C, and an overhead delay D. 
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The original model presented by Takacs (1963) has the following 

formulation and solution within this more general framework.  Requests 

for service arrive at the system from a Poisson source.  If e is the 
i 

time the i  job enters the system, interarrival times are A = e -e ,. 
i   i i-1 

All Ai are independent, identically distributed random variables having 

an exponential distribution with expected value E(A) ■ l/\.     (See equations 

2.4. and 2.5.) 

Models based on the simplistic assumption of constant quanta are 

neglecting a primary feature of many real systems. A way of approximating 

the fact that tasks often return to the queue after using only a small 

amount of the maximum allowable quantum (for example, to wait for an 

input/output request) is to make the quantum W a random variable.  The 

server works on tasks in a cyclic, round robin manner. After each task 

receives a random service quantum it either leaves the system (probability 

i),  or rejoins the end of the queue (probability 1-Z)  while the processor 

works on the next task.  The event, "job rejoins the queue", is indepen- 

dent of both the length of quantum service, and the number of quanta the 

job has received.  The distribution of N, the number of job interruptions, 

is geometric with expected value l/£. 

fHl'V^V,     n=l,2,3,... 
(2.13)  P(N=n) =< 

|0, elsewhere 

W may have a general distribution function with  r.he obvious restriction 

that  it be non-negative.     The first  three moments of W are wl,  w2, w3. 

The  total  service request   for a  complete   interaction,   V,   consists  of   the 

sum of a,random number  of  random quanta W.. 
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N 
(2.14)  V = S W. 

1=1 1 

N has the probability mass function specified in equation (2.13).  Equation 

(2.15) is the Laplace transform of V in terms of the Laplace transform 

of W. 

(2.15)  Lv(s) - S {% +  ^ (s) • P(N=i)} 
i=l  1 "'  i 

=   s (^(s))1 -a -(I-«1"1 

= i^cs) • ^[1-1^(8) -d-A)} 

Moments of a distribution may be calculated from its Laplace transform 

by differentiation. 

dL (s) 
(2.16)  E(V) -vl- ds 

,2, 

s=0 ' *fl 

,2   0  
dLV(s) 

(2.17)  E(V ) =v2 = —^ 
ds 

JK.W2 + 2.(l-Jl).(Wl)
2 

s=0 £ 

From this viewpoint total service time per interaction, V, is deter- 

mined by i  and individual quantum times W..  V may have any distribution 

that can be represented as the geometric sum of variables having an 

arbitrary distribution Fu(
t)« 

For the remainder of this section, consider C, the processing rate 

of the computer, to be one instruction per time unit so that W and V 
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are measures of the quantum and interaction times, as well as the numbers 

of instructions executed.  (Quantum time = (number of instructions per 

quantum)/(processing rate of computer)).  Using arguments that relate 

this model to the M/G/1 queueing system, Takacs (1963) establishes the 

following formulas for the steady state mean value, and second moment, of 

response time R. 

(7  \fk\     Fm - Xw2 + 2wl(l-Xwl) 
(2.18)  L(R) -   2(A-Xwi) 

j&2 -  11 

(2.19)  E(R ) - 6(je.Xwl)^^ . Ä(2+Xwl) + Xwl] 

t2jl[6Xwl3 - 6wl2 - 6Xwlw2 + 3w2 + XwT] 

[12Xwl3 - 12wl2 - 6Xwlw2 + 2X2wlw3 - 3X2w22]] 

The necessary and sufficient conditions for these equations to be valid 

steady state solutions are that Xwl/jl < 1 and that w2 and w3 be finite. 

The term Xwl/ji is similar to the standard definition of traffic intensity, 

p, which is the mean arrival rate divided by the mean service rate.  In 

this model the effective arrival rate is XJI which includes tasks which 

are fed back from the server for additional processing.  One may apply 

Little's Theorem (equation 2.12) to equation (2.18) to obtain the expected 

number of tasks in the system, E(M). 

2.3.2 A First Extension to the Basic Model 

The model described above may be extended in a number of directions 

to include more features of time-sharing.  Processor speed, and interrupt 

overhead become explicit independent variables in the following analysis. 
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Previously W and V were equivalent to time units since the processing 

rate was one instruction per time unit. C, the constant computer speed, 

is expressed in instructions per unit time. W is the number of instruc- 

tions processed before an interrupt occurs, and V is the total number of 

instructions required for a task to complete one interaction. The time 

spent in one service quanta will be W = w/c, and total service time for 

one task will be V' = V/C. 

Interrupts cause overhead.  For example, systems with virtual memory 

structures, such as the IBM 360/67 and the GE 645, require approximately 

five milliseconds to process a page fault.3  This type of overhead may 

be included in the model by adding an interrupt processing delay, D, to 

each quantum w/c.  D is a random variable, independent of W, having first 

three moments dl, d2, and d3.  The central processor continues to work in 

a cyclic manner, but after a quantum interval on one task, it cannot start 

another until the interrupt processing time D has elapsed.  The addition 

of D defines a new total quantum time, Q = w/c + D with first three moments 

ql, q2, and q3.  Using the fact that the Laplace transform of the sum of 

two independent random variables is the product of the individual trans- 

forms, one may easily differentiate L (s) to obtain its moments. 

(2.20) LQ(s) = Lw/c(s) • LD(s) 

(2.21) ql = wl' + dl = wl/c + dl 

(2.22) q2  = w2,   + 2wl,dl + d2 = w2/c    +2wldl/c + d2 

(2.23) q3  = w3/c3  + 3dlw2/c2 + 3d2wl/c + d3 

3See,   for example,   the experiments  performed on  the MULTICS  system at Ml' 

by Corbato   (1968). 

. 
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Equation (2.15) still defines the relationship between W and V.  The 

addition of D to W does not change the users1 demands, but the processor 

takes more elapsed time to satisfy a request in the presence of overhead 

than without it. 

Replacing wl and w2 with ql and q2 (equations (2.21) and (2.22)) in 

equation (2.18), leads to the following expression for mean response in 

this system. 

[X{w2/cr + 2wldl/c + d2} + 2(wl/c + dl) • (l-\(wl/c + dl))] 
(2-24) E(R)-iü-i  2.U-X(wl/c + dl)]  

The necessary and sufficient condition for existence of a steady state 

solution is that X(wl/c + dl)/j& < 1.  The quantity on the left of this 

expression is the effective traffic intensity for the extended model. 

One can make the same substitution in (2.19) to investigate the behavior 

of the second moment of response time. 

2.3.3  Two Examples 

Let V, the number of instructions required to complete a task's 

request, have a general non-negative distribution with first and second 

moments vl and v2.  Consider the simplified case of no overhead and no 

service interruptions (dl = d2 = 0; Ä- 1).  Since w = v, this case cor- 

responds to batch processing where each interaction is processed to comple- 

tion.  Equation (2.24) reduces to (2.10), the Pollaczek-Khintchine result 

for average response in an M/G/1 queueing system.  (The first two moments 

of service time are vl/c and vZ/C ,) 

(2  25)     Em - >V2/C2 1 2(vl/c)(l - Xvl/cj 
(2.25)  L(R) - 2(1 - Xvl/C) 



-35- 

Now consider service to be quantized, but still with no overhead, D, 

associated with quantum interrupts. W and i will be adjusted to hold 

the moments of V constant. The  probability, £, of completing an 

interaction after a quantum of length W is less than one.  Substituting 

the appropriate variables from (2.16) and (2.17) in (2.24) one arrives 

at the following expression for the quantizing model without overhead. 

The final form is identical to (2.25). 

(2.26)  E(R) = XUv2 - 2(1-A) £vl2)/c2J + 2^(vl/c)(l -\lvl/c) 

_ Xv2/C2 + 2(vl/c)(l - Xvl/C) 
2(1 - Xvl/C) 

Equation (2.26) is unintuitive since, for nhis model, quantizing 

without overhead has no effect on E(R), the expected value of response 

time.  Any overhead will increase E(R).  If quantizing does not improve 

mean response, and actually degrades it due to overhead, one may reason- 

ably ask what benefit accrues from this scheduling policy.  Briefly, the 

benefit is that short requests receive better than average response at 

the expense of long requests.  The policy of favoring short interactive 

requests penalizes longer tasks and degrades overall response when there 

is overhead associated with quantum interrupts. 

Figure 2.2 illustrates that even though mean response remains con- 

stant as more overhead-free quantizing occurs, the standard deviation 

of response increases.  For this example each quantum is exponentially 

distributed.  The total service request, V, is also exponential since a 

geometric sum of exponentials is an exponential.  The mean of V is held 
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p =  .95 

P ■  -9 

P =   .7 

P =   -5 

^ 
10 E(N) 

EI:N) = ih 

i 

2 

3 

4 

5 

6 

7 

8 

9 

10 

P =   »5 

1.000 

1.183 

1.225 

1.243 

1.254 

1.260 

1.265 

1.268 

1.271 

1.273 

o =  »7 

1.000 

1.268 

1.333 

1.363 

1.380 

1.390 

1.398 

1.404 

1.408 

l.^ill 

P =  .9 

1.000 

1.363 

1.458 

1.502 

1.528 

1.544 

1.556 

1.565 

1.571 

1.577 

p =   .95 

1.000 

1.388 

1.492 

1.541 

1.569 

1.587 

1.601 

1.610 

1.618 

1.624 

Each  table entry  is  the ratio of  the standard  deviation of response to 
the expected value of response. 

Figure 2.2 

Effect of Quantum Size on Standard Deviation of Response  - SD(R) 
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constant and the mean quantum size and the mean number of interruptions 

(l/jl) are varied. The input rate increases to examine the effect of 

increasing the user demand. For each value of \t  mean response remains 

constant.  Increased service variability is another undesireable effect 

of round-robin scheduling which must be balanced by increased responsive- 

ness to short requests. 

The effects of overhead on response are obvious in the second example. 

Let processor speed, C, be 500,000 instructions per second, and the mean 

request for a complete task, vl be 100,000 instructions. Let the standard 

deviation of the instruction requests be 150,000 instructions.  The aver- 

age processing time per task,vl/c,is 200 milliseconds.  The probability 

that a task will require additional processing after an interrupt is 

.97 (1=  1/30).  Thus a task produces an average of 30 interrupts per 

interaction, and the mean non-overhead quantum time between interrupts 

is 6.67 milliseconds.  Figure 2.3 displays expected response, as a func- 

tion of mean overhead delay, dl, for a number of values of X, the Poisson 

arrival rate of requests.  For each curve, the standard deviation of D 

is twice its mean of dl.  These results show commonly observed response 

degradation caused by overhead delay and by congestion resulting from in- 

creasing arrival rates. 

2.3.4 Mean Response Conditioned on Service Request 

This section contains exact and approximate expressions for mean 

response time conditioned on measures of the service requirement. 

E(R|N=n) is the expected response for a particular task, requiring n 

quanta, which will be marked and followed until it leaves the system. 

Let M. be the number of tasks ahead of this tagged job (both in queue and 
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E(R) 
Seconds 

1.4 Tasks/second 

2 Tasks/second 

X = 1.0 Tasks/secon 

8   10   12   14   16   18 20 dl - mean 
overhead 
per interrupt 
in millisecond 

C = processor speed = 500,000 instructions per second 

l/1 =  expected interrupts per task = 30 

vl = mean number of instructions per task = 100,000 

Fipnre 2.3 

Effects of Overhead and Input Rates on Expected Response - TSMODl 



-39- 

in the processor) as it enters the queue to wait for its i  processing 

quantum.  Define the i  wait, T., to be the time the tagged Job waits in 

queue as the M. tasks preceding it receive their quanta. 

M. 

(2.27)  T. = E Q. 
1  k=l k 

In this equation task quantum time, (1 , includes both the random delay D 

and processing time w/c. 

The first cycle (i=l) is a special case since the remaining quantum 

interval of the task being served when the tagged job arrives has a dis- 

tribution different from other quanta.  Consider cycles after the first. 

Processing quanta of all tasks, including the marked job, have the same 

distribution.  The expected value of the sum of m identically distributed 

random variables is m times their expected value.  Thus the conditional 

expectation of T. given M. = m is: 

(2.28)  E(T.|M.=m) = IIME(Q) = m«ql,   i=2,3] 

Removing the condition by taking the expectation with respect to M. leads 

to the unconditional expected value of T, • 

(2.29)  E(T.) = E(Mi) • ql;   i=2,3.... 

The number of tasks in the system at the start of the i  cycle is 

dependent on system state changes during cycle (i-1).  The probability 

that a job will leave the system after a quantum interval is &,  and the 

probability that it will return to the queue is (l-£).  Thus the expected 
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number of jobs in front of the tagged job at the start of the i  cycle, 

that was also in front of this job at the start of the (i-1) cycle, is 

(l-l)   '   E(M. ,).  In addition, new tasks from the input process which 

arrive during the tagged job's (i-1) queueing wait plus service quantum 

• th 
will also be ahead of the tagged job as it begins waiting for its i 

quantum.  Since the mean number of arrivals from an exponential source 

with rate X during time period T is XT, the expected number of new arrivals 

during (T. . + ql) is X • (T, , + ql).  Taking the expectation with respect 

to T. leads to the following recursive axpression for expected value of M 

as a function of the expected values of M._, and T. ,. 

(2.30)  E(M.) = (l-l)   • E(M._1) + X • (^(T.^) + ql),  i-2,3,... 

Specification of E(M,) and E(T1) allows one to use equations (2.29) 

and (2.30) to calculate all future waits.  Since the arrival process is 

Poisson and independent of the service process, a new task arrives at a 

random time.  E(M,) is thus the steady state expected number of customers 

in the system, E(M), given by applying equation (2.12) to (2.24).  Cal- 

culation of E(T ) is complicated by the fact that when the tagged job 

arrives at a busy system, the task currently being processed has been 

in service for a random interval and its remaining quantum service, Q^, 

is distributed differently from other quanta. As indicated in Section 1.3 

Shemer (1967) did not recognize this fact and his exponential service model 

without overhead contains errors due to this oversight.  Figure 2.4 illus- 

trates the situation. 



-41- 

rMimmiimmin" 

® 
Tagged job 
arriving in 
queue 

I 0 0 0 

Jobs which 
will receive 
a full service 
quantum Q 

Job which will 
finish quantum 
in process when 
tagged job arrives. 

Figure 2.4 

Calculation of First Wait Time, Tj 

Since ql is the expected value of a full service quantum, let qlr 

be the expected value of remaining quantum service, Qr. of the job being 

processed when the tagged job initially arrives at the queue.  Let p. be 

the probability that there are i jobs in the system when the tagged task 

arrives.  Then the expected wait in queue of this task before it begins 

service is the sum of mean values of the service quanta of all queued 

jobs and the expected remaining quantum service of the task in the processor. 

(2.31)  E(TX) = qV?! + (ql/^ 
+ (q^2'^ "^ + •" 

00 

= q^-d-Po) + q1 .5 (i'1)pi 

= qi -d-Po) + q^ECM) - (i-p0)) 

= p.ql + ql-(E(M) - p) 

where p - 1-P0 = ^/*»   (equations (2.10) and (2.16)) 

and E(Q ) = qlr = ^fi-*^»   (equation 2.9). 
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All values necessary for the calculation of expected total wait, T, con- 

ditioned on the number of required quanta, n, are now in easily computable 

form. 

n 
(2.32) E(T|N=n) = E E(T ) 

i=l 
n 

= Ed,) + 2 E(T ) 
1   i=2   1 

One may express this result in closed form by using equations (2.29) 

and (2.30) and straightforward applications of the following identity con- 

cfrning firr '3 series. 

(2.33) 1 + x + x2 + ... + x" = (l-xn+ )/(l-x),  x/l 

■ iH-1 ,  x=l 

(2.34) E(Mk+1) = a^'^ . ECMg) + bi^f j .  k=2,3,... 

where a ■ (!-£) + X*ql 

b = \-ql 

Substitution of this expression in (2.32) leads to a closed form for 

E(T|N=n). 

(2.35) E(TlN=n) = EC^) + ql'E(M2) • ft=J ) + ^^ * t(n-2) (l-a)-a(l-an"2)} 

n~l>2,3,... 

where  E(T1) is given by (2.31) 

E(M2) = X^Ed^ + ql) + (I-JO-E(M) 

E(M) is given by (2.24) and (2.12) 
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Expected total response, conditioned on N, is the sum of mean expected 

total wait and mean total service given that N = n. 

(2.36)  E(R|N=n) = E(T|N=n) + n-ql 

Appendix A includes a derivation of the results of a different model 

studied by Adiri and Avi-Itzhak (1969) using the techniques of this section 

rather than their complicated transform methods.  Their model has a Poisson 

source of requests, and constant swapping overhead with exponential service 

requests.  The results of the two different types of analysis are identical. 

2.3.5 A Simplifying Approximation 

Equation (2.35) is not an intuitive expression. An interesting approxi- 

mation is to let mean waiting time in queue for each cycle after the first, 

E(T.), be equal to the steady state expected number of tasks in the system, 

E(M), multiplied by the mean quantum interval, ql.  Table 2.1 demonstrates 

that the magnitude of the error introduced by making this approximation is 

small.  The exact result, equation (2.35), enables one to measure effects 

of such simplifying approximations.  Shemer (1967) and Rasch (1970) both 

made approximations without realizing it and without measuring the effects. 

These results show that their derivations, although not exact, are close 

to the correct solutions. 

Equation (2.31) is the exact expression for EtT,), the mean wait in 

queue before a task begins to receive its first service.  One could use 

the approximation for this quantity also, but the additional complexity 

added by including the exact expression is small.  Using the approximation 

E(T.) « E(M)-ql in equation (2.32) leads to the lollowing result for mean 

total wait in queue, given that N = n. 
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(2.37) E(T|N=n) = Edj) + (n-l).ql.E(M) 

= p-(q2/2'ql - ql) + n«ql'E(M),   n=l,2,... 

A more interesting form of mean conditional response time is to remove 

the condition on N, the number of quanta received by a task, and replace 

it with a condition on V, the actual processing request.  To remove this 

condition, one must determine the distribution of the number of quanta 

required to fulfill a processing request v. 

CO 

(2.38) E(T|v=v) =  L E(T|v=v,N=n).P(N=n|v=v) 
n=l 

00 

= p.(q2/2.ql - ql) + ql.E(M). S n-P(N=n|v=v) 
n=l 

To evaluate the infinite summation in the above equation, one must 

first determine P(N|v=v), the conditional probability that a task will 

experience N quanta given that it requires v instructions from the central 

processor.  This sumnation is the conditional mean of N given that V = v. 

Define (X) «* f (x) to mean that the random variable X has the distribution 

*n 
given by f(x).  Let f  (x) be the n-fold convolution of the random variable 

A 

X (i.e., fv
n(x) = fY .   .« (x)) .  The total service request for a task, 

^ X A-iT... "PA     / 
1     n 

V, is the sum of N independent quanta, W, where N has the probability mass 

function defined in equation (2.13). 

(2.39)  (v|N"n) ~f*n(v) 

(2.40)  (V,N) - f*n(v).P(N=n) 

(2.41)  (V) ~ fv(v) = 2 P(N=n).f^n(V) 
n=l 
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P(N=n) f "(v) 
(2.42)  P(N=n|V=v) rr=  

V 

fv(v) 
n« 1 2 

One may now substitute equation (2.42) into (2.38) to calculate the final 

form of the mean total wait in queue conditioned on a service request of 

v instructions.  The specific form of the result will depend on the density 

function of W. 

2.3.6 An Exponential Service Quantum Example 

A specific example will illustrate this modal.    The use of an ex- 

ponentially distributed quantum, W, keeps the mathematics simple because: 

(1) the sum of n identically distributed exponential variables, 

when n is a constant, is a random variable having a gamma 

distribution 

(2) the sum of N identically distributed exponential variables, 

when N is a random variable having a geometric distribution, 

is an exponential variable. 

These two well known facts may be verified by calculating the appropriate 

Laplace transforms and comparing them to the trarsforms of the gamma and 

exponential distributions. 

Let the density function of W be exponential with mean wl.  Therefore 

the density function of f  is gamma and the density function of V is ex- 

ponential with mean vl » wl/jj. 
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-v/wl 
(2.43)  fw(v) = ^1— .   v ^ 0 

/ ,vn-l  -v/wl 
(2 44)  £*n(v) = (v/wl) ^  .  v ^ 0, n=1.2.... (Z.^o  ty (V) wl.(n.i); 

-£-v/wl 

(2.45)  fv(V) = ZZ—  ,  v ^ 0 

Substituting the above equations into (2.42) leads to the desired result 

for P(N|v=v). 

n_l  -(!-£)•v/wl 

(2.46)  P(N|v=v)=li
1-il^i^fT .  v-0, n-1.2.... 

(2.47)  E(N|v=v) = E n.P(N|v=v) =  ^  , v ^ 0 
n=l 

The conditional mass function for N, the number of quanta needed to get v 

instructions, is almost the standard Poisson distribution with parameter 

v(l-i)/wl.  Note that the mean number of quanta needed to receive v in- 

structions is not the more intuitive quantity v/wl where wl is the mean 

number of instructions received per service quantum. 

Substituting (2.47) in (2.38) gives a closed fom for mean total wait 

in queue given that a task requires v instructions. 

(2.48)  E(T|V^V) = p-(q2/2ql - ql) + ql.E(M).E(N|V=v) 

= ip.(q2/2ql - ql) + ql-E(M)] + ql.E(M) • (l-£)-v/wl,  v :> 0 

Expected total response conditioned on v is the sum of the wait in the 

queue, mean overhead associated with this task, (wl + (1-Ä) .v).dl/wl, and 

the service time of the task v/c. 
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(2.49)  E(R|v=v) = E(T|v=v) + (wl + (1-Ä) .v)'dl/wl + v/c 

01 +  B'V 

where a- p-(q2/2ql - ql) + ql-E(M) + dl 

B = I/C + (ql-E(M) + dl).(l-jO/wl 

The term a  of the previous equation is the expected value of the 

minimum response time possible in the system.  This unavoidable delay is 

the sum of the task's overhead time and the processing and overhead times 

of the jobs already in the queue. A physical interpretation of this term 

is the response time to a null input (e.g., a carriage return).  Note that 

after this initial delay, expected response is a linear function of service 

request v. A common aspect of many current time sharing models is an 

essentially linear relationship between response and service request.  This 

characteristic is present in the earliest models as shown by the form of 

equations (1.2) and (1.3) derived by Kleinrock, but these early models do 

not include important features such as random quanta and random overhead. 

E(R) may be obtained from (2.49) by removing the condition on v.  Since 

the expression is linear, one simply replaces v with E(V). 

2.4  THE TANDEM QUEUEING MODEL - TSM0D2 

A characterisitc shared by almost all computer programs is that they 

can be represented as repeating cycles of central processor activity fol- 

lowed by utilization of the input-output, (i/o), system. Multiprogramming 

designs allow different programs to use these facilities simultaneously by 
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switching control from a program requesting i/o service to one needing the 

central processing unit. When the original program has finished i/o ac- 

tivity it may queue for additional central processing time and release the 

I/O facility.  Time-sharing operating systems often force task switching 

by making a program release control of the central processor when it has 

exceeded a quantum processing limit.  Figure 2.5 illustrates a basic tandem, 

two server model of this organization.  For analytical purposes it clearly 

does not matter which server is considered the central processor and which 

the i/o system. 

Define the following symbols for use in the model. 

2 = the probability that a job leaves the system after 
a cycle of processing and i/o activity 

C. = a constant equal to the processing rate of sub- 
system i expressed in work per unit time 

W. = the exponentially distributed random work required 
from subsystem i during a processing cycle.  The 
expected value of W. is wl.. 

ii 

|j,. = C./wl. = the exponential service rate of subsystem i 

N = the random number of cycles required by a task to 
finish one complete interaction with the system 

V = an exponentially distributed random variable de- 
noting the total work required by a task from 
the contra! processor in N cycles.  The expected 
value of V is wl./A. 

M. = the random number of tasks waiting in queue i, and 
being served in subsystem i 
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The assumptions for the model are: 

(a) the input process is Poisson with rate X 

(b) queue 1 and queue 2 have unlimited capacity 

(c) the service time in each processor is exponential with 

meanwl1/ci andw12/c2, respectively 

(d) after completing service in the second processor a task 

rejoins queue 1 with probability (1-1) and leaves the 

system with probability (£).  The probability of rejoining 

queue 1 is independent of all other state variables. 

Jackson (1963) presents a number of important results for networks of 

Poisson queues. A summary of many of his derivations appears in Conway, 

Maxwell, and Miller (1967), Chapter 10.  Call the combined input rate to the 

first processor X'.  It is the sum of the external Poisson input, of rate X, 

and that portion of the i/o system's output which is fed back to the first 

queue.  This latter process has a rate of X'-O-A).  Thus X', the rate of 

the combined input, is: 

(2.50)  X' = X + (!-£) • X' 

or X' = X/A 

A key result of Jackson's analysis is that in the network illustrated in 

Figure 2.5 the combined input processes and the resulting output processes 

are all Poisson.  Thus each subsystem may be analyzed as an exponential 

server having Poisson input. 
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In the steady state each of the two servers may be treated as an 

Independent M/M/1 queue with input rate X', and service rate ^    = C^/wl^ 

Equation  (2.10) presents expected  response in an M/G/1 queueing system. 

This equation reduces significantly when service is exponential.    Thus 

expected response through subsystem i, and the sum of nhe expected number of 

tasks waiting in queue and being served in subsystem i,  ECMJ,  are: 

(2.51) £(1^) =  lAti.-X') 1-1,2,    ^ > X' 

(2.52) E(M.) = X,-E(R.) = X'/^-X'). i"1»2»    M^ > *' 

Let T. be the time spent waiting for the central processor plus the 

time waiting and receiving service from the I/O processor on the i  pass 

through the system.  Since all of the stochastic subsystems in this model 

are Poisson, in steady state, job arrivals and departures occur at random 

points in time. For exponential service, the remaining processing time of 

a task is also exponential regardless of how much service the task has al- 

ready received. Thus the wait in queue 1 is E^) ^(service quantum), and 

the mean response time through system 2 is l/^-X').  In steady state all 

cycle times have the same expected value. 

(2.53^  E(T.) ■ E(wait for processor) + E(wait + service for i/o system) 

= iV^ + äipX7T'  ^and^-X' 
i=l,2,... 

The conditional response time of a job requiring v units from the central 

processor which it receives in n quanta is: 
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(2.54) E(R|v=v.^n) = a.li;^TT+T;]-iI7T} + v/ci.  «-1,2.3... 

v ä 0 

p,1 and p,2 > X' 

Removing the condition by using (2.46) leads to the result for expected 

response conditioned on service request. 

(2.55) E(R|v=v) = a +  B-v/c^ 

where a =  —; TTT + 

and   B = ^^(l-D'at + 1 

Figure 2.6 displays the non-linear effect of increasing the demand on 

the system.  For each line on this graph, the processing request, v, is 

held constant and the arrival rate, X, is increased.  Figure 2.7 is a graph 

of expected response conditioned on service request, v, for a number of 

input rates X.  Thus this model also predicts both a linear relationship 

between expected response and service request, and non-linear response 

degradation as a function of system load. 

2.5 A PROCESSOR-SHARED MODEL WITH STATE DEPENDENT OVERHEAD, ARRIVAL, AND 
SERVICE PROCESSES - TSM0D3 

A fundamental concept of time-sharing organizations is that the 

power of the central processing unit is to be allocated to all tasks 

demanding service.  Processor-shared models approximate actual scheduling 

procedures,puch as round robin time slicing, with an ideal discipline in 

which fixed processor capacity, C, is divided uniformly and delivered to 

all active tasks. At every instant, each of m active jobs receives C/ra 
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units of computing power per unit time. Scherr (1967) recognized that 

one of the classic forms of the general "birth and death" model was 

directly applicable to the time-sharing problem.  His formulation of the 

problem allows one to consider explicitly the number of terminals con- 

nected to the system. Scherr considered overhead in a simplified manner 

by reducing the capacity of the central processor from C to a lesser 

value C'. The quantity (l-C'/c) represents the fraction of the capacity 

lost to overhead. 

Van de Goor (1970) measured a number of overhead factors in a small 

time-sharing system. He discovered that a significant portion of over- 

head is proportional to the number of active tasks demanding service from 

the system.  For example, both paging activity in a virtual memory organiza- 

tion and many monitor list searching operations are proportional to the 

number of active tasks. The mathematical structure of a finite source, 

processor-shared model, allows one to incorporate overhead loss that is 

proportional to the number of active tasks in the system.  If there are 

m active jobs demanding service, then at each instant every task will seem 

to have its own virtual processor with capacity (l-f»m)'C/m instructions 

per unit time.  To keep capacity positive the overhead less fraction, f, 

must be less than 1/N where N is the number of terminals connected to the 

system. 

Each of the N input terminals is an exponential source with rate \. 

However, once a terminal has submitted a job, it is blocked from additional 

input activity until the computer completes its request. The combined 

total input rate for all terminals that do not have requests pending is 

(N-m)«X, where m is the number of jobs actively using the processor. All 
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service requests are drawn from an exponential distribution with parameter 

v.  Thus the mean service request is  l/v instructions, and the rate at 

which the server processes jobs is V'(l-f.m).C. An important feature of 

this type of model is that it is stable in the sense that the input rate 

decreases as the number of tasks demanding service increases.  Unlike 

the models in the previous sections where the queues could become un- 

bounded, this structure is self correcting, and a steady state solution 

will always exist.  Figure 2.8 illustrates the basic organization of the 

model. 

The standard method of solving this class of model is to form a set 

of differential difference equations involving system state variables. 

Let P (t) be the probability that there are m active tasks in the processor 
in r 

ftt time t.  Since all of the individual input and service processes are 

exponential this continuous-time Markov model has simple state transition 

probabilities.  For example, when 1 < ra < N the general state equation is: 

(2.56)  P (t+6) = (N-m+l).X-6-(l-f'(m-l)).v.C.6)-P ^(t) 
m m-i 

+ (l-(N-m)->-fO-(l-(l-f.m)-vC.5)-P (t) 
m 

+ (l-f«(m+l)).v.C.5-(l-(N-m-l)-X.6)-Pm+1(t) + o(6
2) 

The basic principles underlying this equation are that if interevent 

times have an exponential distribution with rate y, then: 

(a)  the probability that an event will occur during an interval 

of length 6 Is y*6, and the probability of no event occurring 

is (l-y.6) 
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(b) if  there are k such processes working  in parallel,   then 

the probability that an event will occur during an inter- 

val of length  6 is ley 5 

(c) the probability of two or more events occurring during 
2 

6  is of  the order of  6«6,   i.e.,  o(6  ). 

The next steps in the derivation are to construct  similar equations  for 

the two boundary states m=0 and ra=N, and  take  the  limit as  6-0.    Let 

the derivative of the state probability with respect  to  time be P^d) 

P  (t+6)-PIT1(t) 
(2.57) lUalt^Q     1 yt) 

The set of differential difference state equations becomes: 

(2.58) P^ (t) = -N.X-P0(t) + (l-f)»v.C.Pl(t) 

p'(t) = (N-(m-l))-X-Pm ,(0 - {(N-m)-> + ( l-m-f)vC]-Pm(t) 
m '"" 

+ (l-(m+l)-f)«v.C-Pin+1(t) , m=l,2,...N-l 

P^t) = X-PM At)   -   [(N-N).X + (l-N.f).v.C].P (t) 

Statistical equilibrium (or steady state) exists when the state probabili- 

ties no longer change with time. 

(2.59)  lim..  m P'U) = 0 v t -» ^ m 

(2.60)  limt ^ wPm(t) = Pm 

■ 
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To solve for the equilibrium state probabilities, one lets all 

p'U) = 0 and then uses the resulting recursive set of steady state equa- 
m 

tions, and the fact that the sum of all of the probabilities is unity, to 

compute all values of P . Setting all P'(t) to zero and reworking equa- 

tion (2.58) by substituting the result for Pm into the equation for P^ 

leads to the following set of steady state equations. 

(2.61) (l-m'f)'vC«P - (N-(m-l))'X'Pin_1, m»l,2,.. .N , f < I/N 

0  ■   (N-N)-X-PM a 

Adding all terms on both sides of this set of equations produces the follow- 

ing expression. 

N N N        N 
(2.62) vC« E P - v-C-f« Z m.Pm » N.\. S P - X« S mP 

m=l 
m       m=9   "^     m=0 m    m-0  m 

Substituting equations (2.63) and (2.64) into (2.62) leads to (2.65), the 

result for the expected value of the number of tasks demanding service from 

the system, E(M). 

N 
(2.63) E(M) - S m.P 

m-0   m 

N 

(2.64) E P = ! " Po i m      u 
m0! 

(2.65) E(M) = IN-X - v.C.(]-P0)V(X-(v.C).f) , f < 1/N, f ^ 

Equation (2.64) and the set of equations (2.61) lead to the derivation 

of P , the probability that the central processor is idle. All of the 
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other state probabilities are expressible in terns of P_. 

(2.66)  Pj = N-X-Pp/lv.C.a-f)} 

P2 = N.(N-l).X
2.P0/[(v.C)

2.(l-f)(l-2f)} 

Pm = Pc n  {(N-(i-l)).X/(vC-(l-i-f))}, m=l,2 N 
1=1 

m 
n 
1=1 

where n X. = X..X-.X-...X 
*—i   i   12 3   m 

N  m 
(2 .67)  P0 = 1/tl +nEi ^ ((H.(l.l)).X/(v.C.(l-i.f))}] 

If the state dependent overhead fraction, f, is zero, then the result re- 

4 
duces to the classic formula for the exponential machine repair problem. 

To express mean response tine as a function of the mean number in 

the system (equation 2.65) one may use the equilibrium argument that the 

mean number of jobs submitted to the system per unit time must equal the 

mean number served per unit time.  Each of the N terminals goes through 

many cycles of generating a request and then waiting for the system to 

respond to that request.  The mean time spent in the first part of this 

cycle is l/X time units and the mean time spent in the second is C(R) 

time units. Thus the mean arrival rate from each terminal is l/(l/x+E(R)) 

and the total mean arrival rate to the system is N times this quantity. 

The service rate of the system is vC*(l-m*f) where m is the number of 

tasks being served. 

See Saaty (1961), p. 326. 
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(2.68)  N/(1/X+E(R)) = O.Pn + vC -E (l-m.f).? 

ml m 

• vC.(l-P ) - v.C.f.E(M) 

Another way of looking at this relation is to note that when there 

are m tasks in the system the arrival rate from the remaining terminals 

is (N-m).X and thus the mean arrival rate is (N-E(M)).X.  One may equate 

both expressions for mean arrival rate. 

(2.69)  N/(1/X+E(R)) = (N-E(M)).X 

By using equation (2.65) in (2.68), or more simply by solving (2.69) 

for E(R). one may obtain the following result for mean response time 

in TSM0D3. Both approaches lead to the same result. 

(2.70)  E(R) =  ^^  
V ;  X.(N-E(M)) 

Figure 2.9 illustrates mean response as a function of N, the number of 

terminals connected to the processor, for a number of values of f, the 

overhead loss function. 

Each of the models developed in this chapter focusses on a different 

aspect of current implementations of tMe-shared computing systems. Th« 

inherent complexities of queueing models make the simultaneous considera- 

tion of all such features very difficult.  The next two chapters present 

empirical investigations of both simulated and actual systems.  Response 

time measures of these more complex systems are compared with the predic 

tions of the analytic models of this chapter.  Chapter 5 contains a number 

of examples of how one may use these models. 
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CHAPTER 3 

SIMULATION STUDIES OF SYSTEM BEHAVIOR 

3.1  INTRODUCTION 

The results of Chapter 2 provide new expressions relating response 

time measures of system performance to parameters such as overhead loss, 

processing capacity, service and arrival distributions, and interrupt 

probabilities.  To keep results easy to compute, these analytic models 

are based on many simplifying assumptions concerning system architecture 

and user behavior.  In addition, equation (2.49), the least complicated 

expression for mean response conditioned on service request, depends on 

the approximation that all cycle times after the first are equal to 

the mean number of tasks in the system multiplied by the mean quantum 

interval. The goal of this chapter is to explore the robustness of these 

results when they are applied to systems that do not satisfy all of the 

assumptions. The following experiments range from simulations closely 

related to the analytic models of Chapter 2 to more complex designs based 

on features of an operational time-shared system. 

The first simulation is an exact model of Figure 2.1, with overhead 

and quantum times both having truncated normal distributions (both were 

constrained to be non-negative).  The second and third models are based 

on a tandem queueing structure like that analyzed in Section 2.4.  The 

last simulation in the chapter includes a detailed model of the schedul- 

ing algorithms of TSS, an operating system for the IBM 360/67.  Task 

dispatching in this system Includes dynamic priorities, and is much more 

complex than the cyclic, round robin, scheduling of the previous models. 
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The goals of the experiments are: 

(a) to determine how well the equations of Chapter 2 predict 

performance characteristics, such as expected value of 

response conditioned on service request, even though the 

models differ from the assumptions underlying the previous 

derivations 

(b) to study perrormance characteristics that were not derived 

analytically but are easy to examine by simulation and 

which lead to a deeper understanding of feedback queueing 

systems 

(c) to determine if a complex model based on an operational 

system exhibits the same basic characteristics as the 

simpler models. 

3.2  EXPERIMENTAL METHODOLOGY 

3.2.1 The Simulations 

All of the models are implemented in SIMULA, a general purpose 

simulation language which extends ALGOL in a number of important dimen- 

sions.  In addition to all of the features of ALGOL, the language pro- 

vides good list processing capabilities, a powerful co-routine capability 

including a full range of process scheduling mechanisms, and a number of 

1 
statistical procedures. 

For the first three studies each experiment consisted of a 100 task 

initialization period, in which statistics were not gathered, followed 

The reader interested in SIMULA is directed to Dahl and Nygaard (1966), 
Unlvac (1967), and McCredie (1970). 
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by a production period In which statistics were calculated for 1000 

casks passing through the system.  Pilot runs produced Initial estimates 

for running times and variances of the sample statistics.  Each experi- 

mental run of the first study required approximately 10 seconds of Unlvac 

1108 processing time.  Since the second and third models have two pro- 

cessing bubsystons in tandem they required twice as much computer time 

per simulation as the initial model.  To simulate the processing of 1000 

tasks in the complex model described in Section 3.5 required about three 

or four minutes of 1108 time.  As a result of the expense associated 

with the detail of this model, only a few experiments were perfonred. 

Each run represents an independent set of statistics since the 

models were initialized with different starting seeds for random number 

generators, and all statistical counters were reset to zero.  The initiali- 

zation period to remove startup transients preceded each run. Appendix B 

contains listings of the simulations used for the studies. 

3.2.2 The Statistical Analysis 

One must use statistical tools to analyze data from stochastic 

systems. A striking characteristic of the data from the simple queueing 

structures of Sections 3.3 and 3.4 is its high variance.  The estimators 

used to determine model variables come from independent experiments.  label 

the value of an estimator from simulation run 1, X .  Each independent 

2 
X. is drawn from a population having a finite mean g, and variance a . An 

estimator of p, is the sample average X, which is based on all of the ex- 

periments and is Itself a random variable.  In Section 3.3 and 3.4 each 

study consists of 20 independent experiments (n = 20). 
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-  1 n 

(3.1) X = i. E X, 
ni=l i 

2 
The population variance, a  , for each variable, is unknown in the experi- 

ment, but one may use the following estimator of it. 

n 

(3.2) s2 = -i- ^ (X.-X)2 
n-1 i=l  1 

To scale X so that it has a mean of zero and.variance of unity, 

subtract g. from X and divide the result by (s /n)2. 

1     1 

(3.3) Z = (X^)/(s2/n)2 = (n^OC-pj/s 

The central limit theorem states that Z becomes normally distributed with 

mean 0 and variance 1 as n becomes large. Z does not have a normal dis- 

tribution for small n because it is based on the random variable s2, an 

2 
estimate of a . Z has a Student-t distribution which deviates from the 

Normal distribution for small values of n, but approaches the Normal 

when n is large (e.g., n > 30).2 

One may form a confidence interval for sample averages by locating 

points which partition a desired percent of the area under the density 

function for the Student-t distribution.  For example, one may compute the 

probability that an interval based on sample statistics covers the true 

mean, p..  Using the Student-t distribution with n-l = 19 degress of freedom, 

one finds that in these experiments the probability is .95 that the interval 

of equation (3.4) will contain the true mean, y,. 

2 
See Mood and Graybill  (1963), pp.  251-253  for a discussion of the estima- 

tion of mean values when the variance  is  not knowr  and  pp.   149-153  for a 
discussion of  the central  limit  theorem. 
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l I 

(3.4) X - 2.09-(s2/n)2 ^ ^ ^ X + 2.09«(a /n) 

3.3.  A SIMULATION OF TSMODl 

3.3.1 The Model 

TSMODl, the feedback queueing model studied in Section 2.3 and illus- 

trated in Figure 2.1, is the subject of the first validation experiment. 

The following parameters were used in the study: 

F (t) = F (t) ~ normal distributions (mean=.05, c[=.015) 
w      u 

wl/c = dl = [j, = .05 seconds 

w2/c2 = d2 = a2+(^)2 = .002725(seconds) 

w3/c3 = d3 = (u,)3+3-nTr2 = . 00015873(seconds) 

Processing rate = C = 1 instruction/microsecond 

Arrival rate = X = 1 job/second 

Probability job leaves after an interrupt =  Z =  1/8 

The statistical estimators used to summarize the date  are: 

(3.5) R = the sample average of response times 

1 " ■ ■=■• S R. 
n 1-1 1 

where R = (time task i leaves the system - time tack i 
i 

entered the system) 

(3.6)  SDi'R) ■ the .'■ample ntandard deviation of response times 
1 

I n       2. 2 
- iTT'S (R.-K)'] 

II i i=l   L 
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(3.7) t. = the sample average of the time spent waiting until 

a task receives its first processing quantum 

1 n 

= —* E (time task i waits before beginning its first 
Is» 1 

processing quantum) 

(3.8) PO'100 = the percentage of time the processor was idle 

= 100 • (time processor idle/total simulated time) 

(3.9) B = least squares estimate of slope of response time as 

a function of service request (where v is service 

request of the i  task) 

n n     n n  „   n  „ 
= in •  E R.-v  - S R. * E V.)/{tl  •  E v  - (Ev ) j 

i=l  1  ^  i=l  1 i=l 1      i=l  i  t^l1 

The analysis of Section 2.3 presents exact solutions for the expected 

values of R (equation 2.24), SD(R) (equation 2.19), t, (equation 2.31), 

and P0 (equations 2.10 and 2.16).  Equation (2.49) is an approximate ex- 

pression for the expected value of response time conditioned on service 

request.  This equation contains a parameter B which is the slope of the 

conditional response time.  The approximation is based on the assumption 

that the service request, V, is an exponentially distributed random vari- 

able, and on the mathematical simplification that all cycle times after 

the first are equal to the mean number of tasks in the system multiplied 

by the mean quantum interval.  The next section contains comparisons of 

the results of the simulations of TSMODl with the analytic expressions for 

these variables. 



-70. 

3.3.2 The Results 

Table 3.2 presents all of the experiemtnal results for each of the 

five variabias for 20 independent runs, each of which represents 1000 

observations obtained after an initialization period of 100 tasks.  The  ^ 

9        9     9 
experimental values are combined to form the estimators X, s , s, (s /20) 

defined by equations (3.1) and (3.2).  Table 3.1 suranarizes this data by 

presenting the 95 percent confidence interval from the experimental data 

and the analytic result from Chapter 2 for each of the five variables. 

All of the analytic results lie within the confidence intervals.  The 

samples display the high variance inherent in queueing systems of this 

type.  This particular sample exhibits slightly heavier congestion than 

predicted by the analytic solution.  For example, runs six and ten are 

very heavily congested experiments.  Figure 3.1 is a typical histogram of 

response times in TSMODl. 

Variable 

R 

SD(R) 

PO-lOO 

tT 

i 

95 percent confidence 
interval [see eq. (3.4)1 

3.35 S E(R) * 4.51 

4.47 ^ SD(R) ^ 6.31 

17.38 *  p0 • 100 S 20.43 

.34 s E(t1) s .47 

8.33 i E(B) S 11.28 

Sample 
Average 

Analytic 
Result 

3.93 3.81 

5.39 5.58 

18.90 20.00 

.41 .39 

9.81 8.5^ 

TABLE 3.1 

Comparison of Experimental and Analytic Values for TSMODl 
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Response time in seconds 

Figure 3.1 

Histogram of Response Times for TSMODl 
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The analysis of Section 2.3 predicts a nearly linear relationship 

between service request and mean response.  To test this result, each 

task recorded both its service request and its transit time through the 

system. These data were separated into   equal service intervals (and 

an additional overflow interval) and processed to calculate mean job 

response for each interval.  Table 3.3 displays the average response, 

and the number of observations on whi-.h it is based, for five service 

intervals for the 20 experimental runs. Results for the X, s2, s, and 

2  2" 
(s /n)  are also displayed. 

Figure 3.2 is a graph of the data of Table 3,3.  Each point is the 

sample average of the observations in that interval, and is placed at the 

mid point of the service interval.  The vertical bars through each point 

represent the sizes of the 95 percent confidence intervals computed using 

equation (3.4).  The solid line connects the sample averages and the two 

broken lines form an area in which the true value of mean response con- 

ditioned on service request lies with 95 percent confidence.  The increas- 

ing variance with service comes from two factors:  (a) the number of 

observations decreases in the intervals having higher values of service 

and (b) variance of response increases with service request.  Thus long 

jobs experience longer, and more highly variable, response than short 

jobs. 
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3.4    A SIMULATION OF TSMOD2 

3.4.1    The Models 

TSMOD2 is similar to TSMODl with an additional processing system 

after the central processing unit. This extra queueing subsystem repre- 

sents an input/lutput (i/o) system for program swapping, paging, and 

file handling.  Figure 2. 5 illustrates the structure and Section 2.4 

includes an analysis of the model when the service times in both systems 

are exponential.  This section includes simulations of two versions of 

TSM0D2.  In the first (which is identical to the model of Section 2.4) 

both the processor and the i/o systems have exponential service distribu- 

tions and there is no explicit overhead delay.  In the second, the pro- 

cessor is identical to TSMODl (an overhead delay and then a processing 

quantum) and the i/o processor has a uniform service distribution which 

is more representative of rotating external storage devices than an ex- 

ponential distribution. The following parameters were used for these 

two models: 

Server 1 

Server 2 

Version I 

Exponential distribution 
with rate 10 jobs/second. 
No overhead. 

Exponential distribution 
with rate 10 jobs/second. 

System arrival vate=  1 job/second 

Probability job leaves 
after an .interrupt ■ i 

Version II 

Overhead and service 
quanta both have Normal 
distributions with 
mean = .05 seconds and 
standard deviations = 
.015 seconds (rate = 
10 jobs/second) 

Uniform distribution be- 
tween 0.0 and .2 seconds 
(rate = 10 jobs/second). 

1 job/second 

1 
8 
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The statisitical estimators used to summarize the data are: 

R     ■ sample average of response time (previously defined) 

SD(R) = sample standard deviation of response time (previously defined) 

(3.10) M..    = sample average of number of tasks in, and waiting in queue 

for, server 1 

1 •! 
= - J (number in queue 1 + number In server 1) dt 

0 

where T ie  the simulated time interval of the experiment 

M-    = same definition as M, except that queue 2 and server 2 

replace queue 1 and server 1 

B     = least squares estimate of slope of conditional response 

time (previously defined) 

Section 2.4 contains exact expressions for the expected values of 

M, and M. (equation 2.52), and for the mean value of \l  (equation 2.55). 

The unconditional mean response time, E(R), may be obtained from equa- 

tion (2.55) by remaining the condition on V.  Since this equation is 

linear in v, one simply replaces v with its expected value E(V).  The 

results of Version I verify this analysis and provide insight into the 

variability of the results.  Version II is included to test the effects 

of changing the distributions of the overhead delay and the processing 

requests.  The next section contains comparisons of these two versions 

of TSM0D2 with each other and with the analytic expressions of Section 

2.4. 



-78- 

3.4.2 The Results 

The results of the simulations of TSM0D2 are presented in a manner 

similar to that of Section 3.3.  Table 3.4 summarizes the results of 

Version I by presenting the 95 percent confidence intervals for the 

data and the analytic results from Section 2.4 for these variables. 

Table 3.5 displays the xesulLs for each of the variables for the 20 ex- 

periemntal runs of TSM0D2 - Version I. As in the previous section, each 

run represents 1000 observations obtained after an initialization period 

of 100 tasks. All of the analytic results lie within the confidence 

intervals. To test the prediction of a linear relationship between 

service request and mean response, each task again recorded both its 

service request and its transit time through the system.  Table 3.6 cjn- 

tains the results of separating the service requests into equal intervals 

and calculating the sample averages for each interval.  Figure 3.3 is 

a graph displaying this data and the 95 percent confidence intervals 

for response as a function of service request. 

95 percent confidence 
Variable    interval {see eq. (3.4)1 

Mj 3.58 £ £(1^) ^ 4.29 

M2 3.59 S E(M2) ^ 4.45 

R 7.24 <■  E(R) s 8.61 

B 7.89 5 E(B) ^ 9.20 

Table 3.4 

Comparison of Experimental and Analytic Values for TSM0D2 - Version I 

Sample 
Average 

Analytic 
Result 

3.94 4.00 

4.02 4.00 

7.93 8.00 

8.55 8.88 

- 
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Table 3.7 contains the experimental results for TSM0D2 - Version II. 

Each run represents 1000 observations obtained after an initialization 

period of 100 tasks.  To test the prediction of a linear relationship be- 

tween response and service request each task again recorded both its 

service request and Its transit time through the system.  Table 3.8 con- 

tains the sample averages of response time for various service request 

intervals and the number of data points in each interval.  Figure 3.4 

is a graph of this data including the 95 percent confidence intervals for 

response time as a function of service request. 

TSMOD2 - Version II differs in a number of ways from Version I.  Since 

neither the central processor nor the l/o system have exponential service 

distributions, the outputs and thut^s the resultant inputs to both systems 

are not Poisson.  Both service distributions have a coefficient of varia- 

tion less than an exponential and thus the outputs from the servers are 

more regular than from a Poisson process.  This increased regularity of 

service and input pt »cesses reduces both the congestion in the system and 

response times.  The analysis based on exponential input assumptions over- 

states congestion.  Queueing theory offers little help in the analysis of 

non-Poisson queues in tandem.  For example, if the methods of Section 2.4, 

in which each subsystem is treated as an independent queueing system, are 

applied to this example and both subsystems are treated as independent 

M/G/1 queues (with Poisson Input rate X' " 8) the mean number in each sub- 

system would be ECM,) = 3.809 and E(M2) = 2.
Q33.  The simulation results 

show these value" to be M, = 2.60 and M- = 2.3&i  or about 25 or 30 percent 

less than predicted by an M/G/1 model.  This example indicates how non- 

radical changes in modeling assumptions may force the analyst to switch 

from analytic techniques to simulations to get more accurate estimates of 

system parameters.  Note, however, that the linear relationship between 
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response and service request, which was derived on the basis of the 

assumptions of Version I, Jolds for Version II. Both models exhibit 

the same general behavior as the input rates increase, or as one sub- 

system changes its processing capacity relative to the other. 

3.5 A SIMULATION OF SCHEDULING IN TSS/360 

3.5.1  The Mod si 

TSS/360 is a time-sharing operating system for the IBM 360 Model 67. 

(IBM, 1968). This computer differs from the standard 360 line because of 

hardvrare additions designed to create a virtual memory addressing struc- 

ture utilizing segments and pages . Section 5.3 contains an elementary 

discussion of paging. The interested reader is directed to Wilkes (1968) 

and Denning (1970) for excellent treatments of the subject. 

The algorithm which schedules and dispatches tasks in this multi- 

programmed, time-shared environment is a section of TSS called the table 

driven scheduler.  Since each TSS system has a different user community 

to :, . Lsfy, and a different hardware configuration, the parameters in 

the table driven scheduler may be set by each installation. Many parameters 

within the table are branching codes to other sections of the table.  The 

scheduling section of this simulation is much more detailed than other 

subsystems such as the paging disks.  This model is also implemented in 

SIMULA. Appendix C contains a listing of the program.3 

McCredie and Schlesinger (1970) describe the structure of the model 

in more detail than is required here.  One goal of the design was to show 

that a useful model can be easily implemented without detailed modeling 

of all system components.  Different system modules have vastly different 

This program was designed jointly by J. McCredie and S. Schlesinger.  S. 
Schlesinger implemented and debugged the version oresented in Appendix C.' 
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levels of detail in the simulation, and the areas of detail may change 

as the model evolves.  Elements of the pnysical system were included only 

when necessary because of interactions with the scheduler. The primary 

goal of the study was to obtain measures of response times experienced 

by interactive users.  Figure 3.5 illustrates the model's structure. 

Three hardwa^ facilities appear:  the CPU, the paging devices, 

and memory. The CPU appears implicitly in all software elements of the 

system and in the execution of user programs. No CPU charact.ristirs 

such as clock cycle time or instruction times are included, although 

they are implicit in the amount of computation time used by user programs. 

Two types of paging devices are included in the model: disks and 

drums.  Disks are viewed as an infinite source of new pages demanded by 

executing programs and as an infinite storage facility for pages written 

out by the monitor. Actual operation of these units is complex since 

arm seeks on different spindles can be overlapped, and software disk 

managment routines try to optimize arm movements to maximize the flow 

of pages into core.  Instead of modeling this process directly, the 

access time of a page is drawn from a distribution.  The statistical 

characteristics of this distribution reflect the operation of the actual 

system. The parameters of the distribution were detemined by observa- 

tions from system logging information. Drums are represented by their 

revolution times and their capacity in pages.  The distribution of access 

times for pages from a drum is uniform from zero to the revolution time. 

There are two major software routines in the model - the timer inter- 

rupt handler and the table driven scheduler. Minor software functions 

occur implicitly in other parts of the model. A timer interrupt occurs 

l^Mt^ii linn i nnliMaiikili    t - -■fri ni-irtiatiiiihTrrm! !-■ ■ 
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when a user program has CPU control at the end ot its time quantum.  The 

interrupt handler may, depending on the program's scheduling parameters, 

do any of the following:  force a time-slice end and write pages onto die 

disk (or drum); change the scheduling paramete. .>; give the program an 

additional time quantum.  The timer routine in the model performs the func- 

tions of several subroutines of TSs/360 which are called when a timer 

interrupt occurs. 

The table driven scheduler is the most detailed portion of the simula- 

tion.  Each program in -.he system is assigned an entry in the schedule 

table.  This entry contains maximum limits on CPU usage and paging activity 

of a program.  A program exceeding the limits is penalized by loss of 

eligibility for CPU allocation and possible lowering of priority. This 

penalty occurs by changing the program's schedule table entry to a new 

one depending upon how the progran exceeded the bounds of its previous 

entry.  For each maximum there is a new schedule table entry to which 

the program will be assigned if that limit is exceeded.  The monitor inter- 

rupts a program during its time slice to check if any bounds have been 

violated. 

The rcheduler maintains several lists of programs, each one having 

a different eligibility for CPU allocation.  User programs move among the 

lists depending on their schedule table entry and operating characteristics. 

The schedule table in the actual system has limits on additional operating 

characteristics of programs to enable fine-tuning of the scheduling algorithm. 

Program behavior is characterized by periods of CPU usage separated 

by pa^e faults.  When tho program receiver CPU control from the scheduler 

it is interrupted only by a timer interrupt or page fault.  While it has 

«.wllÄÄWÖ-'-.v'..       -'^     iEvtel^l**^.^ .1.    ..............^K    OLWO^^.AÜMWiä^äw^l.W^d.»...,,...,   ._       ■■    .    .J..^,..^^,,V..:,.... .......ku »Tltitlilftlltl'ifif   fll    II . 
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CPU control, no classification is made of language used, system functions 

called, or other modes of activity.  The only parameter of interest during 

CPU usage is the time necessary to complete the user request.  Paging 

activity is based upon the working set concept of Denning (1968).  Each 

request specifies the working set size for that request.  The user pro- 

gram then calls for sufficient pages to fill the working set.  There is 

no distinction concerning the contents of each page.  Only the number in 

core is of interest. 

The users in the model make terminal requests and wait for system 

response at the terminal. A request consists of the amount of CPU time 

required and the number of new pages which have to be brought into core 

for a complete working set.  The model draws both of these parameters 

from distributions either approximating observed system behavior or test- 

ing hypothetical modes of system use.  The distribution of response time 

experienced by a user is the statistic of primary interest. 

3.5,2 The Results 

A modular simulation such as the one described In the preceding sec- 

tion gives a systems analyst a great deal of flexibility.  The original 

goal of the model was to aid in tuning TSS/360 to the job load of the 

CMU environment.  The first use of the simulation involved a group of 

users who proposed paying a higher rate to receive better service from 

the system.  The plan designed to achieve this service differential was 

to create an algorithm in the schedule table so that users from the 

higher priority class would follow a different path through the schedule 

tablo.  Tests using the model indicated that benefits of thi> proposed 

solution were marginal compared to the Increased charge.  A different 

plan, based upon the concept of guaranteed terminal access to a certain 

■■'"■'-■■'^■'^*i^t:a...-...-T. 



-91- 

150 y 
12(U- 

90 - 
Response 
Time ' 
(seconds) 

60.. 

30 

0 *"~ 4 h + 1 1 v 
12       3      4      5      6 

Service Request (seconds) 

Figure 3.6 

Model of TSS/360 - Heavy Usage Script 

Response 
I'ime 
(seconds) 

50 

40-- 

30- 

20-- 

lo-- 

/ 

/ 
./ 

/ 

Service Request (seconds) 

Figure 3.7 

Model of TSS/360 - Probe Job in Normal Mix 

,...,.vv.r..Ji.>«^i||-fl|L||f:ittli -Mil ■ ^-jA.^f.uk^-;...—. ■ .■■. .—.^-u.^.A.iWt.^i^j.,,'^,.. 



-92- 

number of higher priority users, provided the required service differen- 

tial. 

Ihe model may be used like the previous ones in this chapter to 

measure both the mean value of response times for various loadings and 

the mean response time conditioned on service request.  Figures 3.6 and 

3.7 are typical graphs of such experimental results. The first is a 

heavily loaded system, and the second is more representative of a typical 

user load. Results from this model of TSS/360 have the same global char- 

acteristics as the results from the analytic models of Chapter 2. 

Mean response conditioned on service request is a linear function of the 

service request, and severe response degradation occurs with heavy loading. 

3.6  DISCUSSION 

The examples of this chapter illustrate some of the advantages and 

disadvantages oi siu.ri.ition as a tool for the analysis of computer systems 

Flexibility is demonstrated by the ease with which these models may be 

modified incrementally to examine the effects of changes such as new dis- 

tribution assemptions or the addition of another processing subsystem for 

input and output activity. Appendix B contains the listing for TSM0D2. 

To use this program to study TSMODl, one removes the activity describing 

the i/o system, and changes a faw lines of code in the activity describing 

the central processor. Appendix E contains a listing of the program used 

to study different dynamic control algorithms for time-shared systems.  The 

program used to study TSM0D2 is also the basis for this latter model.  The 

dynamic control algorithm, and the user behavior model, were easily added 

to the original design. The model of TSS/360 which is listed in Appendix C 

l^^.^:...,,.;,..,.,^..^..^ |^ ;     .   ■  ; . ..;■, ..^s..^.-..^.    ..... ■         I Uttim^"""^ "''"ilWl lltlMl^i- illWttli ! ' 
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also illustrates the flexibility of a modular approach to simulation. 

Once implemented and debugged, a well designed simulation can be a very 

powerful aid to system analysis. 

Large simulations are expensive to implement and to run.  The data 

in the previous sections illustrate the variability which is inherent in 

queueing processes.  To properly analyze the results of experiments on 

models of such systems, one must make many experimental runs.  Since each 

experiment is only one realization of a stochastic process, it can become 

expensive to produce tightly bounded estimates of the values of state 

variables. 

The primary goal of this chapter was to examine the robustness of 

the analytic models developed in Chapter 2. When the simulations are 

closely related to the analytic models, the analytic results are within 

the confidence intervals determined by the experiments.  In addition, the 

global behavior of more complex systems such as TSM0D2-Version 2 and 

TSS/360 has the characteristics predicted by the analytic models.  The 

next chapter presents the results of three empirical investigations of 

operational time-shared computing systems. 

• 

tttttotfaiaä^L^t-^^vw^. .:v-.^-^^^fc"«^"^^-^ir.i.-^.i^^ ....^^■■^■-^^Hl.ttolMiw-.- ■■        limM,ü^'^-^''^^iu^.fat.r^-^.^^^^^^i^.^.-:. .. 
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CHAPTER 4 

EMPIRICAL STUDIES OF SYSTEM BEHAVIOR 

4.1  INTRODUCTION 

Although the models of Chapter 2 include important features often 

neglected in other models, they are simple structures when compared with 

actual computer systans.  The simulation studies of the previous chapter 

illustrate a number of properties of feedback queueing structures, and 

demonstrate that more complex models exhibit the same basic behavior pat- 

terns as the simpler analytic structures.  The purpose of this chapter 

is to present empirical evidence that one may describe macroscopic per- 

formance measures of actual systems with these same analytic formulations. 

The models capture enough of the essential features of actual designs 

to enable one to use them, as outlined in Section 1.1 and illustrated 

in Chapter 5, in systems analysis studies. 

There are many different ways to measure and evaluate the performance 

of computing systems.  Perhaps the oldest, and most coüiraon, technique is 

the execution of a representative set of programs (called a benchmark 

series) while monitoring the system.  The development of a benchmark 

series which accurately models the characteristics of a particular user 

coraraunUy is a difficult problem that is not adequately solved. An ad- 

ditional problem is that a computing system can usually be tuned to do 

well on any specific benchmark series.  However, the purpose of the ex- 

periments which follow is not to compare and evaluate different systems 

for a particular environment, but rather to explore their general behavior 

and compare it with that predicted by the models of Chapter 2. 

llra.»m-im,.^..-.JJ.m-i.„ -^-'-''tiilglrlliliill  ■ t,^^,.-,......., .j,,,,, tMiiMmunif----..»^..-.-:..^ = ■■ ■■ -«- «Mllia'.mliimni'T .. iiiniMilirlUlilf "^J" " ■■.-.--^■JI:J..-.:.-.:  
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A representative ivenchmark series is particularly hard to create 

for a time-shared system that is to support many independent users. A 

method which is related to the standard benchmark technique is a user 

population simulator which creates pseudo user tasks which follow a 

script with precise inter-command timing delays.  This procedure is an 

important evaluation technique because of its high degree of repeatability. 

Two coamon ways of implementing it are to dedicate a second computer to 

the task of simulating the user population or to create, within the system 

being measured, a special program that interfaces with the oparating sys- 

tem and is capable of inserting user jobs into the task queue.  Special 

programming systems are required for this technique. 

An alternative design, which was used for the first experiment, 

makes use of people who follow a benchmark script.  The purpose of this 

design is to create a semi-controlled environment in which users can 

run pre-designed programs and experience realistic system response.  The 

experiment was non-repeatable at the instruction level since users were 

not synchronized or driven by any timing infonnation, but this typa of 

precision was not required for the global performance measures of interest 

in this chapter. An advantage of this semi-controlled design is that 

actual user behavior doas not have to be modeled.  Real users type at dif- 

ferent speeds with different accuracy.  To use a user population simulator 

one must design a script, and an explicit model of the behavior of all 

users.  Thus in the semi-controlled environment one trades a gain in 

realism for a loss in repeatability.  Another reason for using the semi- 

controlled environment was that the response time investigations, reported 

in the next sections, were but one dimension of a larger investigation of 

lü'iiiHlliiAlMiilairilliiri' im     i      i   ' . 
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properties of different time-sharing systems. In the larger study, 

qualitative judgments of users along dimensions such as ease of use, 

perceived power, and reliability were important. 

A disadvantage of both of the experimental techniques discussed so 

far is that to observe the system in a realistic mode of operation one 

must create a script which is a good approximation to user behavior. 

An alternative procedure is to measure the system during an actual user 

session. One may treat the computer and its user community as one large 

system to be measured by inserting a probe task with known characteristics 

into the job queue and monitoring its behavior. An advantage of this 

technique is that if the probe job does not use a great many resources, 

measurements can be made during actual user sessions without causing 

severe degradation to other users. 

The following experiments include the monitoring of both an operational 

IBM 360/67 using TSS/360 and a Univac 1108 using EXEC-8.  In the first 

experiment, a set of users followed a script which directed their inter- 

actions with TSS/360 while the system calculated and saved response statis- 

tics. For the second, a small probe job was inserted into the actual 

user environment. This probe entered the 360/67 at random intervals over 

a period of a number of weeks, measured selected state variables, and 

gathered statistics about its own response. The last experiment was 

similar to the first, but it was performed on the 1108 using EXEC-8. Thus 

the same basic experiment was conducted on two very different systems, and 

two different types of experiments were performed on one of the systems. 

The following sections contain a more detailed discussion of each of the 

experiments and their results. 

■ 
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4.2  EXPERIMENTS ON TSS/360 

4.2.1 Controlled User Script 

The computer used was the Carnegie-Mellon IBM 360/67 using TSS/360 

Version 5.1.  The experiment was run during the spring of 1970 when 

Carnegie was using a memory hierarchy which included IBM large capacity 

storage (LCS) which had a relatively slow cycle time of eight microseconds. 

For this experiment 29 selected TSS users received a short training 

session in which they were introduced to both the goals of the study and 

the script.  The computer was dedicated to the experiment for approximately 

two hours.  Users not participating in tha study were denied access to 

the Systran.  Participants had special account numberr valid only for the 

study. All background batch computing was terminated so that only the 

script tasks submitted from terminals would be active. 

Figure 4.1 is a block diagram of the script, and Appendix D contains 

a complete listing of the script. After establishing a connection with 

the computer each user performed initialization tasks which gave him ac- 

cess to required programs and which created necessary statistical files. 

The initialization program called the FORTRAN compiler and directed it 

to process TESTl.  There were two small intentional errors in this source 

code and each person then used the editor to correct these statements and 

list the program.  After the program was recompiled each user called it 

a number of times submitting as control input the number of times the 

program should execute its major loop.  The code multiplied two thirty 

by thirty matrices, and stored the result in a third matrix.  Each user 

task measured and printed its response time, and stored the information 

-mm 
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LOGON to system 

I 
V 

Perform Initialization 
I tasks such as copying 
idata sets and setting 
lup output files 

Compile, edit and 
recompile TESTl 

Figure 4.1 

Block Diagram of User Script 
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on a file for later statistical analysis.  The second program, TEST 2, 

was a small job which adds the integer one to a counter a specified number 

of times and then stops.  The third program, TEST3, was similar to TESTl 

in computing requirements, but it demanded a large amount cf storage 

(approximately 23,000 words). All of the programs computed the elapsed 

time required by the system to process each request.  The users saved all 

terminal listings for later data verification purposes. 

Figure 4.2 is a graph of the sample averages of respons» times for 

the three tests.  The horizontal axis measures the computing request in 

terms of the number of iterations, I, through the major loop of TESTl. 

Each of the other programs was scaled to this measure of central processor 

demand.  Each point on the graph represents the sample average of requests 

having the same value of I. 

4.2.2  TSS/360 Probe Experiment 

The goal of this experiment is to investigate mean response as a 

function of system load and service request in a typical user environment. 

Over a period of a number of weeks a version of TESTl, which is listed 

in Figure 4.3, was submitted to TSS/360 as a conversational task.  A sup- 

porting package was written to simplify the execution of each run of the 

probe.  One command initiated a complete cycle of five replications of 

TESTl, each with a different parameter to control the processing request. 

As in the previous experiment, control information was in terms of the 

number of required iterations of the major loop of the program.  Data 

points were saved in a master file for later processing.  Each data block 

included the time of the experiment, the number of active conversational 
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Figure 4. 3 

Listing of TEST! 

DIMENSION IB(8),IE(8) 
DIMENSION Ml( 30, 30)^2 (30, 30)^3(30, 30) 
100 PRINT 899 

899 FORMAK/'  TEST1: PLEASE ENTER N IN FORMAT 12') 
READ 900^ 
900 F0RMAT(I2) 
IF (N.EQ.O)  GO TO 10 
PRINT 901^ 
901 FORMATC  TEST1: ITERATI ON-M 3 ) 
CALL CLOCK(IB) 
DO 6 L-^N 
DO 2 1-1,30 
DO 1 J-1,30 
M1(I,J)»2 
M2(I,J)»3 
1 CONTINUE 
2 CONTINUE 
DO 5 1-1,30 
DO k   J-1,30 
M-0 
DO 3 K»l,30 
3 M»M+M2(I,K)*M1(K,J) 
M3(I,J)=M 
i» CONTINUE 
5 CONTINUE 
6 CONTINUE 
CALL CLOCK(IE) 
TRAN-36000*(IE(1)-IB(1))+3600*(IE(2)-IB(2))+600*(IE(3)-IB(3)) 
TRAN-TRAN + 6Ü*(IE(IO-IB{1»)) + 10*(IE(5)-IB(5)) + (IE(6)-IB(6)) 
TRAN-TRAN+.1*(IE(7)-IB(7))+.01*(IE(8)-IB(8)) 
PRINT 903,IB 
903 FORMATC  START TIME« ', 211, ':', 211, 
PRINT 901»,IE 
9OU FORMATC  END  Tl ME- ', 211, ': •, 211, ' : ', 211, '.', 211) 
PRINT 905,TRAN 
905 FORMATC  RESPONSE TIME- '^8.2) 
WRITE(1,800)   N,IB, IE,TRAN 

1,18,811,811,F8.2) 

',211,'.',211) 

00   FORMAT(2H 
GO  TO   100 
10   PRINT   906 
906   FORMATC' 
STOP 
END 

TEST1   NOW COMPLETE.   YOU  ARE   IN  COMMAND MODE") 

TEST1:  PLEASE ENTER N IN FORMAT 12 
01 

TEST1:   ITERATION    1 
START TIME« 20:17:05.80 
END     TIME* 20:17:13.36 
RESPONSE TIME« 3.00 

TEST1:  PLEASE ENTER N IN FORMAT 12 
01 

TEST1:   ITERATION=    1 
START TIME« 20:lit:2'j.35 
END      TIME« 20:15:15.09 
RESPONSE TIME=        3k.7k 
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users, control information and the response time experienced by the pro- 

gram. The system operator initiated a run of the probe approximately 

once every hour while TSS was running user jobs. 

The probe ran in a different environment each time it was initiated. 

The program remained the same, but the system load varied from light to 

heavy. Detailed status information about each user was not gathered. The 

data were classified according to the number of active users and the pro- 

cessing request. Figure 4.4 is a graph of the sample average of response 

time conditioned on service request for a number of different system loads. 

Each line represents a different user population density. Data points 

were aggregated into four classes according to the number of active users 

on the system (5-10, 10-15, 15-20, 20-25). Figure 4.5 treats the same 

data in a different way.  Instead of displaying equal load lines, this 

graph presents equal service request curves plotted against the number of 

active users. Since the users were grouped into classes, the data points 

are in the middle of the appropriate intervals. Again the service request 

is measured in terms of I, the number of times the probe had to execute 

its major loop. 

4.3 EXPERIMENT ON BXEC-8 

EXEC-8 is a general purpose time sharing operating system which runs 

on the Univac 1108 computer. Many of its design goals are the same as 

TSS/360. One major difference in philosophy is that there is no virtual 

memory.  Instead of dividing programs into pages, as in TSS/360, EXEC-8 

moves entire programs back and forth from core memory to external storage. 

This experiment was the same as that described in Section 4.2.1.  The 

overall design was identical to Figure 4.1. The computer had 196K words 
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of high speed core storage, and a fully balanced set of drums and disks. 

The computing system was dedicated to the experiment for approximately two 

hours.  The test was part of an overall evaluation of EXEC-8 performed 

by the CMU University Computing Council, in the spring of 1970, and 

Univac donated the time at their Chicago Information Systems Division ser- 

vice bureau.  Forth-three users participated in the experiment.  Each 

followed the same script, and each saved the terminal listings for later 

analysis.  Figure 4.6 is the graph of the sample averages of response 

conditioned on service request.  Once again the global behavior corres- 

ponds to the predictions of the analytic models. 

4.4  DISCUSSION 

TSS/360 and EXEC-8 are large operating systems which control complex 

time-sharing systems.  The philosophy of memory organization is complete- 

ly different in the two designs.  The results presented in this chapter 

should not be used as a basis for comparing the two different systems. 

There was no attempt made to calculate the costs of the machines, and thus 

one cannot make cost/performance comparisons.  The particular programs 

used in the script and for the probe could be unintentionally biased to- 

wards one machine.  The goal of this chapter was not to compare two dif- 

ferent systems, but to observe their macroscopic performance. 

The models of Chapter 2 capture enougl of th, basic design philosophy 

of these two systems to predict the observations that for equal values 

of load, measured in terms of the number of active users, response is a 

linear function of service request and that for equal service requests, 

response is a non-linear function of system load.  One important variable 

not explicitly considered in any of the previous models is the size of 
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user tasks.  Figures 4.2 and 4.6 show that for equal service request, 

measured in instructions from the central processor, response depends 

on the size of the program.  TESTl required approximately 3,000 words 

for its code and data, and TEST2 needed only a few hundred words. 

TEST3, however, was relatively large and required approximately 23,000 

words of core storage.  New models which consider the memory require- 

ments of user programs should be developed to investigate this observed 

relationship between response and size. 

Analytic models, simulations, and empirical investigations should 

interact.  Section 1.1 outlined a number of ways these tools should aid 

each other in systems analysis.  The results of this chapter clearly in- 

dicate that future analytic models should consider memory requirements 

as an explicit parameter. The results also show that models like those 

of Chapter 2 do have the ability to predict macroscopic behavior of actual 

systems. The next chapter illustrates a number of ways these analytic 

results may be used. 
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CHAFTER 5 

APPLICATION OF THE MODELS 

5.1  INTRODÖCTION 

Chapter 2 contains a number of new results from models of time-shared 

computing systems.  Each model focussed upon a different feature of real 

systems because the current state of queueing theory makes the simultaneous 

treatment of all such features very difficult. The goal of this chapter is 

to illustrate how models of this level of complexity may be used in three 

areas:  (1) design (2) performance improvement studies and (3) dynamic system 

control.  The user of such models need not have the mathematical background 

to develop new solutions, but he must understand the underlying concepts and 

assumptions.  The developer of new models should present them in such a way 

as to make these features readily understandable to the vser.  The presentation 

of Chapter 2 was an attempt to make the assumptions and the methodology obvious. 

The experiments of Chapters 3 and 4 are included to demonstrate that systems 

of greater complexity than the models, including real time-shared computers, 

behave in ways which the models predict.  This chapter presents some realistic 

examples of how these models may be used. 

5.2  SOFTWARE LOCKOUT IN A MULTI-PROCESSOR 

The following problem illustrates the use :• modifications of the develop- 

ments of Section 2.4 and Section 2.5 in a real design problem.  The Department 

of Computer Science at Carnegie-Melion University is implementing both a multi- 

processor system called Cramp (Bell et al., 1971) and an operating system for 

it called HYDRA (Wulf et al, 1971).  The major goal of this project is to 

 ! I ■■•-■-■'"■■-■■- 
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create a powerful and flexible computing system which will support parallel 

and pipeline processing and which is capable of orderly growth through the 

addition of processors and memory. A major problem in the architecture of 

such a system is the scheduling and coordination of the many individual pro- 

cessors.  The approach taken in HYDRA is to have a common shared data base 

which contains all of the information necessary for a processor to make a 

scheduling decision. While one processor is examining or updating this shared 

information all others must be prohibited from accessing or changing it. The 

act of protecting data from all but one processor is called locking and the 

code accessing this data is called a critical section. 

Figure 5.1 is a diagram of the model used to study the locking of critical 

sections in C.mmp.  Each of N homogeneous processors is a source of scheduling 

requests, and each request must gain access to all of the data starting with 

the first critical section and proceeding to all sections in order.  If the 

first critical section is free, the processor issuing the request locks the. 

section and uses (possibly modifying) the data. When the request is satis- 

fied, the processor unlocks the first critical section and tries to gain ac- 

cess to the second.  If a critical section is locked, the processor must wait 

for access until it has been unlocked by some other processor.  Thus, a qieue 

of waiting processors may form in front of each critical section. A pro- 

cessor will be designated as "blocked" for a scheduling operation if it is 

either waiting for, or inside, one of the S critical sections. 

A basic design problem is to determine how many critical sections, S, 

to build into the shared data base. At one extreme S could equal the number 

of logically distinct information segments in the data base, and at the other 

extreme it could be equal to unity by having a single critical section include 

the entire data base.  There is an overhead loss of L timM units associated 

with each locking and unlocking operation which would be minimized by setting 

■■ 
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S equal to one, but this solution does not allow for concurrent use of the 

scheduling information. Overall system efficiency may be increased signif- 

icantly by allowing many processors to have simultaneous access to the 

scheduling information even though the additional locking operations introduce 

more overhead. 

The total time, T, that a processor must have access to the shared infor- 

mation in order to make a scheduling decision is a random variable due to the 

dynamic nature of the data base and to the many different kinds of decisions. 

Let the time spent in each of the S critical sections be an exponentially 

distributed random variable with mean L + T/S.  This approximation includes 

an assumption that the designer would try to balance the system so that pro- 

cessors would spend the same mean time in each critical section. 

5.2.1  A Poisson Source Tandem Queueing Model - MODI 

A simple but useful model to explore this problem is the Poisson source, 

tandem queueing structure discussed in Section 2.4.  Since there is no cycling 

of requests within the critical sections, the appropriate modification of 

this model is to set I,   the probability that a request will leave the system 

after passing through the S servers, to unity.  All arguments presented in 

Section 1A  to justify analysis based on independent M/M/1 queueing systems 

apply to this model also. 

Let the source of scheduling requests be Poisson with rate X"N requests 

per unit time where N is the number of processors making requests, and \   is the 

rate from an individual processor. A major assumption in this formulation 

which is not realistic is that a processor will continue to issue scheduling 

requests before the previous ones have been satisfied. Congestion will be 
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more severe In this model than in a more realistic formulation which assumes 

that a processor may not generate additional scheduling requests when it is 

in the blocked state. The next section considers such a finite source model. 

The mean number of requests, EiHj ,  either waiting for, or inside of. each 

of the S critical sections is simply the expected number of tasks in an M/h/l 

queueing system with input rate X-N, and service rate 1/(L + T/S) . 

(5.1)  ECM^ « X-N/(1/(L + T/S) - \.fi) 

The total number of requests waiting for,  or inside of,  all critical sections 

is S-E^).     Little s theorem,  presented in equation (2.12).  relates  the mean 

response  time  through all critical  sections.  E(R).  to the mean number of blocked 

requests. 

(5.2)     E(R)=S.E(M1)/(X.N)   = S/{1/(L + T/S)   - X-N) 

Figure 5.2 is a graph of mean response through all critical sections for different 

values of S and N for fixed X. L. and T for the Poisson source model. 

5.2.2 Finite Source Models - M0D2 

A more realistic approximation to actual processor behavior than tht 

previous model is the assumption that each of the N processors computes for 

an exponentially distributed random interval and then makes a scheduling 

request.  The processor will be unable to proceed with normal computing until 

it has gained access to all S critical sections and is no longer in the blocked 

state.  As in the previous model, the time spent in each critical section will 

be an exponentially distributed random variable with mean L + T/S. 

If the number of critical sections equals one, the model reduces to one 

form of the machine repair problem discussed in Section 2.3(with the overhead 
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loss fraction, f, equal to zero). Madnlck (1968) used this model to calculate 

the mean number of blocked processors, when S-1, as a function of P, the 

number of processors In the system. Jackson (1963) derives results for 

general networks of Polsson queues which have statf* dependent Inputs.  This 

general solution may be applied to this model in a straightforward manner to 

determine the mean number of blocked processors for an arbitrary number of 

critical sections, S.  His method leads to the following equation for the mean 

number of blocked processors in the finite source model illustrated in Figure 

5.1. 

(5.3)    E(M) 

E |  i.N! . (Vl + A . /X Y ) 
1=1 L(N-l) ! \ S-1  / \ u ' J 
N ?     N» . /S-1 + i\ .  ^X NO 
r l (N-D! (^ s-1  ; ur; ) 

Where u = 1/(L + T/S) 

The second argument used to derive (2.69) applies to this model and thus 

equation (2.70) may be used to relate mean response time through the critical 

sections to mean number of blocked processors. 

(2.70)   E(R)   ^ 
X'(N - E(M)) 

Figure 5.3 Illustrates the relationship between the mean response time and 

the number of processors, N, and the number of critical sections S, for fixed 

X, L, and T for the finite source model. 
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A lower bound for mean response time of scheduling requests may be 

obtained using an idealized state dependent service rate model based on 

the development of Section 2.5.  In this model, the system is capable 

of dynamically reconfiguring the structure of the shared data base in the 

following way. Let m be the number of processors requiring access to the 

scheduling information at time t.  The ideal system would provide m critical 

sections at time t. Whenever a processor completes its scheduling activity, 

or whenever a processor arrives with a new request, the accessing program 

will instantaneously change the structure of the data base to provide 

exactly the same number of critical sections as processors which need ac- 

cess to this data.  In addition, all m processors will always have access 

to some data so that they will never be idle while attempting to use the 

shared scheduling information. Although this scheme is obviously imprac- 

tical, it does lead to a lower bound for response time, and one may see 

how close to this bo'.md a practic i implementation may get. 

Since every processor may use scheduling information at once, the 

exponential service rate for ea^h processor is l/(T+ra.L), where m is the 

constantly changing number of processors demanding access to the common 

data. A processor will not have to wait for any other processor, but it 

will pay a dynamic overhead penalty with rate m-L time units where m changes 

with the system state.  Let P (t) be the probability that there are m pro- 

cessors in critical sections at time t. As in Section 2.5 one may write 

the following system of state equations. 

(5.4)  P0(t+6) = (1-N.X.6) • P0(t) + (l-(N-l).U) • 6.P1(t)/(T+L) + o(6
2) 
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p (t) = (N-(ra-l))-X.6 il-(n.-l)-6/(T+(m-l).L)] • Pm.l
(t) 

in 

+ (l-(N-m)-X-6) • {l-m.fi/CT+ra.L)} • P (t) 

.2, 
+ i(m+l).6/(T+(m+l)-L)} • [l-(N-(m+l)-X-6} - P^U) + o(6 ), 

m=l,2,...,N-1 

PN(t) = X»8«tl-(S-l)'6/(T+(N-l)-L)}»PN.1(t) 

m 
(5.5)  P = Fft -n X-(N-(i-l)) • (T+i»L)/i,    ni-1,2 N 

1=1 
N 

0      . . m 
i=l 

One may calculate the mean number of processors in the blocked state by 

solving the above set of equations and then using equation (2.63).  Equa- 

tion (2.70) relates the mean response time for a scheduling request to the 

mean number of blocked processors.  On Figure 5.3, the line labeled 

"S = ideal" is the plot of mean response time for this idealized version 

of the critical section scheduling problem. 

5.2.3 Discussion of Results 

Both Figure 5.2 and Figure 5.3 illustrate the sa.uc types of performance 

changes with respect to changes in the number of processors and the number 

of critical sections. Mean response time increases with the number of 

processors.  For a constant number of critical sections, S, the increase 

2 
+ [l-N-6/(T+N-L)} PN(t) + 0(6 ) 

Following exactly the same procedure as in Section 2.5, one first collects 

terms and then takes the limit as 6 - 0 to get P^t).  In statistical 

equilibrium lim P'(t) = 0, and lim P (t) = ?„.  The result of this manipula- 
t-»oo m t-»" 

tion is the following set of steady state equations. 
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in mean response .ime is approximately linear, with respect to N, until 

the system becomes congested. As N increases beyond this point, the slope 

of mean response time as a function of N grows larger with increasing N. 

This non-linear response time degradation as a function of the number of 

processors is more severe in the first model (because processors continue 

to submit requests while blocked) than in the second, but it is evident in 

both. 

The addition of one more critical section significantly improves mean 

response, for higher values of N, in both models. The additional locking 

overhead, L, associated with each critical section degrades performance 

slightly for small values of N. At these low values of N, the arrival rate 

of requests is so low that the extra locking overhead is not compensated 

for by the potential parallel utilization of the S critical sections. 

An interesting characteristic of thesa models is the large performance 

improvement achieved by the creation of one or two additional critical 

sections. Figure 5.3 demonstrates that when S=2, the response time im- 

provement is about one half of what the idealized system could provide. 

The improvement is greater for higher arrival rates of scheduling requests. 

The slight response time degradation for low arrival rates indicates that 

an efficient design would be the implementation of a few (5=2, or 3) 

critical sections.  This choice would create an effective safety valve. 

Whenever the load would increase, parallel access to the data would occur 

and the shared scheduling information would not become a bottleneck. The 

overhead penalty at low arrival rates is in the neighborhood of only five 

percent and the improvement at higher request rates is approximately fifty 

percent. 

.,  .■,.:^-^-- ■■..■..■*Mjte,.-... 
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All conclusions dra^n from a model like this depend on the values 

of the input parameters. The variables isolated for this model are: 

X, the mean arrival rate of scheduling requests from each processor; N, 

the number of processors; S, the number of critical sections; T, the mean 

time required to perform a scheduling operation; and L, the mean time 

needed to lock and unlock a critical section.  The system designers can 

determine the values of T and L from code requirements and the speed of 

the processors, and they know the range over which N may vary.  However, 

one needs an estimate of X to determine the best value of S.  Unfortunately, 

this parameter is very hard to estimate before the system has been built. 

This basic dilemma is at the heart of many crucial design decisions. 

One needs the value of an important parameter to make a good implementation 

decision, but that value can only be estimated with a reasonable degree 

of confidence after the system has been in operation for some time.  A 

good analytic model can be an important tool in such decisions.  The nature 

of system response over a wide range of possible values may be easily 

studied.  These sensitivity studies may lead directly to a solution, or 

they may help to plan a strategy for future experimentation and performance 

evaluations. 

For example, the model of scheduling activity in C.mmp indicates that 

when the number of processors is less than four or five, and scheduling 

requests arrive with a mean interarrival time of five milliseconds (X=]/5000) 

from each processor, a single critical section is all that is needed.  As 

one adds more processors, or alternatively, if the rate of scheduling re- 

quests is much greater than this estimate, then one or two additional 

critical sections will improve performance significantly.  Since both the 

.^» • 



-120. 

overhead penalties at low request rates, and the implementation costs, are 

small for these additional critical sections, the designers at Carnegie- 

Mollon chose a multiple locking strategy for Cramp. 

5.3  PERFORMANCE IMPROVEMENT ANALYSIS 

Consider a time sharing system similar to the IBM 360/fa7.  This sys- 

tem, using the operating system TSS/360, was the basis for the simulation 

presented in Section 3.5 and it was used for the empirical investigations 

reported in Section 4.2.  Many of the powerful features of this system 

lead to high overhead costs.  The virtual memory design gives every user 

a working space for programs and data that is much larger than the amount 

of high speed core memory in the systQwi.  The operating system manages 

tills virtual memory so that users do not have to worry about storage al- 

location problems.  When a user wants some information that is not cur- 

rently stored in the high speed memory the system will automatically 

retrieve it from secondary storage.  All information in the system is 

divided into blocks called pages.  A page fault occurs when a program 

needs access to a page that is not currently in high speed memory. 

Each page fault causes both an overhead operation,due to the many 

bookeeping functions that must be performed, and a request to the input/ 

output (i/o) subsystem to retrieve the new page.  Quite often a page 

already in memory must be placed in external storage to make room for 

the new page.  The page fault rate is related to the amount of high speed 

core allocated to each active user.  As each user's core allocation be- 

comes smaller he will generate more page faults.  Computers with a virtual 

memory often have been observed to enter a mode of operation, commonly 
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called thrashing,in which each user is allocated so little core memory 

that he generates a page fault very soon after gaining control of the 

central processor.  Then the combined page request rate from all users 

may exceed the capacity of the i/o subsystem. When thrashing begins 

efficiency drops very quickly due to the combined effects of page fault 

overhead and the i/o system bottleneck.1 A common cause of thrashing is 

allowing too many active programs to be squeezed into core memory with 

the result that none has enough of this resource. 

A manager of this type of time-shared system can improve system 

perfomance in a number of ways.    This section will Illustrate how 

the models of Chapter 2 may aid in a study of alternative performance 

improvement plans.  For example, changes in technology, or in operating 

budgets, may make it feasible either to increase the processing capacity 

of the central processor (C.measured in instructions executed per unit 

time) or to increase the total amount of core memory available. One may 

want to combine both methods.  The performance measure used here will be 

the mean response time experienced by the users.  The hypothetical system 

will have characteristics that are useful for illustrative purposes, and 

will not be representative of any particular implementation. 

Increasing C, the instruction rate of the computer, will benefit 

users because their tasks will take less processing time. A common way 

of increasing C is to improve the perfomance of the memory in the system. 

For example, the 360/67 at Carnegie-Mellon was configured with a large 

amount of core memory, called LCS (Large Capacity Store), having a relatively 

slow cycle time.  Improvements in memory technology made it possible to 

1 
See Denning (1968) or (1970) for good discussion of thrashing. 
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increase the speed of similar memories by a factor of approximately 

three.  if the number of active users is kept below the number that causes 

thrashing, what improvement may be expected in mean response time if C 

is increased by a factor of two or three and all other parameters remain 

constant? An increase in C would be of little help if the system were 

operating under conditions where thrashing could occur frequently. 

Increasing the amount of core memory available will help users be- 

cause they will be able to compute for longer intervals, when they have 

control of the central processor, before causing a page fault.  Overhead 

will decrease because there will be fewer page faults to process, and the 

paging demand placed on the i/o system will also decrease.  How much will 

a two or three fold decrease in the number of page faults experienced by 

a task benefit mean response time if all other parameters remain the same? 

What effect would one observe from a combination of these two possible 

performance improvements? 

The hypothetical system which will form the basis for the analysis 

will be a computer with the following basic characteristics;2 

(a) the original ^peed of i:he  central processor vill  Le 

250,000 instructions per second; 

(b) tasks arrive at the system with a mean rate of 2 per econd; 

(c) each task originally will issue an average of 40 page 

faults per request; 

(d)  each request will be for an exponentially distributed 

number of instructions having a mean value of vl « 5 0,000; 

current0^';!! C5aracteristics a" illustrative representations of some 
1*1^*1  a

tL^e-shared computers which make use of extended core storage 
devices and a virtual memory design. *Eor«ge 
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(e) the overhead time to process a page fault will be a 

random variable with a mean of 5 milliseconds;  (Since 

a page fault will occur with a mean rate of once every 

50,000/40 = 1,250 instructions, or about once every 5 

milliseconds, the system is spending approximately 50 

percent of its time in paging overhead operations.) 

(f) the time required to locate and transfer a page of in- 

formation from external storage will be approximately 

10 milliseconds. 

In the following analysis three different types of possible per- 

formance improvements will be considered: 

Case (a) Mean overhead time required to process a page fault will 

remain constant at dl = .005 seconds per page fault re- 

gardless of the value of C, the effective speed of the 

central processor.  C will increase from 250,000 to 

550,000 instructions per second. 

Case (b)  The mean number of instructions required to process a page 

fault will remain constant at dl-I = 1250 instructions. 

Thus the mean time needed to process each page fault will 

be (dl-l/c).  C will increase from 250,000 to 550,000 in- 

structions per second. 

Case (c)  C will remain constant at 250,000 instructions per second, 

but the mean number of page faults generated by each task 

. will decrease from 40 per interaction to 18.2 per interaction 

(£ increases from .025 to .055). 
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The distribution of the number of instructions a task 

requests will remain the same, but tasks will compute for 

longer periods of time before generating a page fault. 

Increasing the effective speed of the central processor may, or may not, 

have an effect on time required to perform overhead operations associated 

with a page fault.  Case (a) represents system designs in which an in- 

crease in the instruction rate of core memory dedicated to users does not 

affect the speed of overhead activities associated with the resour -A  al- 

location functions of the operating system.  For example, the system could 

have a memory hierarchy in which the operating system used the fastest, 

and most expensive, memory in the system and user programs ran in slower 

core memory (LCS).  Performance improvements in LCS would not affect the 

speed of overhead functions which make use of the high speed memory. 

Case (b) represents the situation in which the performance of all memory 

in the system is improved.  Case (c) illustrates the effects of an addition 

of ro- re memory to the system with a resulting decrease in paging activity. 

5.3.1  TSMODl Analysis 

Figure 2.1 illustrates the structure of TSMODl.  Paging overhead is 

treated explicitly in this model.  Overhead will be a random variable 

having a mean of dl and standard deviation of dl/5.  Equation 2.24 pre- 

sents the functional relationship between mean response time and the other 

system parameters.  Let the expected value of V (the number of instruc- 

tions required to complete a task's request) be vl, and the expected value 

of W (the number of instructions executed between page faults) be wl.  If 

V has an exponential distribution, W will also have an exponential distribution 

 lillllllllltlltilrtll     In .      ^^"-: ■-'"'-'- , ■  Ki.il.liai.'ntr  '-I 
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with mean i'vl  and second moment w2 = 2.(wl)2. The values of all para- 

meters needed for the initial configuration of the model are: 

C = 250,000 instructions/second 

X = 2 tasks/second 

I   = 1/40 

vl = 50,000 

wl = l-vl 

w2 = 2.U.vl)2 

JI m /.005, case (a) 
~11250/c,  case (b) 

d2 = (dl/5)2 + (dl)2 

Note that the i/o system does not appear in this model. An implicit 

assumption associated with this structure is that the i/o system is not a 

bottleneck and will not significantly affect performance.  Any delays 

associated with page transfers will degrade performance from that predicted 

by TSMODl. 

Figure 5.4 presents graphs of the performance increases which result 

from the three different strategies (a), (b), and (c).  The first example 

of Section 2.3.3 indicated that when overhead is not present and when all 

other parameters were held constant, changes in i did not cause changes 

in the mean response time. As more quantizing took place (i decreased) 

the standard deviation of response increased, but the mean remained the 

same.  Figure 2.2 illustrated the effects of a type (c) improvement in 

an overhead free environment.  However, the overhead included in the model 

of this section has a large effect upon mean response as Z changes. 

Cutting the paging rate in half is equivalent to doubling the speed of 

core dedicated to users. A careful examination of equation (2.34) indicates 

that an increase in C produces a response time improvement similar to a 

mammffMiiiiBiiiiK 
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decrease In the number of instructions required to satisfy a task's 

request. A decrease in the paging rate (an increase in Ä) produces an 

improvement similar to a reduction in overhead delay associated with the 

processing of page faults.  Cases (a) and (c) produce almost exactly the 

same improvements.  Case (b) reduces the load on the central processor 

by decreasing the times required to process both a task's request and 

the overhead associated with each page fault. 

5.3.2 TSM0D2 Analysis 

Figure 2.6 illustrates the structure of TSM0D2. An i/o subsystem 

in tandem with the central processor illows one to consider the effects 

of page transmission delays on mean response time.  To keep the analytic 

formulation tractable, one must assume that the service times spent in 

both the central processor and the i/o system are exponentially distributed. 

The analysis of Section 2.4 did not include any provision for overhead 

degradation due to the processing of page faults. 

One may introduce overhead into TSM0D2 in the following way. Let 

the service time spent in the central processor be an exponentially dis- 

tributed random variable having a mean of (vl/c + .005/A) seconds for 

case (a) and a mean of (vl/c + 1250/(C-«) seconds for case (b). As in 

the previous section the total number of instructions required to satisfy 

a task's request will have a mean value of vl. The mean time spent in 

the central processor during each quantum interval will be an exponentially 

distributed random variable with mean ((vW)/c + .005) seconds for case 

(a) and mean ((vl-A + 1250)/c) seconds for case (b).  This formulation 

retains the essential features of a random quantum interval which is 

divided into an overhead segment and a processing segment. 
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Equation (2.55) presents the mean response time in TSM0D2 conditioned 

on the fact that a job requires v instructions.  Since this is a linear 

function of v.one may remove the condition by replacing v with its ex- 

pected value presented in the preceding paragraph.  Let the time re- 

quired to find, and then transfer, a page from external storage be an 

exponentially distributed random variable with mean wl2 = .01 seconds. 

All parameters required for this model have now been specified. 

Figure 5.5 is a graph of the performance increases achieved by using 

the three improvement plans.  in this model an increase in C, the pro- 

cessing rate of the central computer, has no effect on the i/o subsystem. 

Case (b) is again better than case (a) because an increase in C reduces 

the overhead delay.  But the best of the three strategies is case (c). 

A reduction in the paging rate achieved by the addition of more core 

reduces both overhead and the demand on the i/o system.  For case (c) 

the systan maintains a better overall balance, and neither subsystem be- 

comes overly congested. 

5.3.3  TSM0D3 Analysis 

TSM0D3 is a finite source, processor-shared, model with an overhead 

loss which is a function of the state of the system.  Figure 2.8 illustrates 

the structure of this configuration. Like TSMODl, this model does not 

have an i/o subsystem and thus an implicit assumption in its use is that 

the i/o delay is not significant. Any delay in the i/o system will add 

to response times computed by this formulation. 

The model does not explicitly consider any overhead associated with 

the processing of page faults.  The state dependent overhead loss represents 
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general overhead degradation, but it is not a function of the paging rate. 

To apply the model to the situation of interest in this section one may 

take the same approach as in Section 5.3.2.  The instantaneous exponential 

rate for each job in the processor-shared system was called vC«(l-f'm) 

in Section 2.5.  The number of tasks in the processor at each instant of 

time is m.  Let vC be equal to J&'C/(vl«£ + .005'C) for case (a) and 

£'C/(vW + 1250) for case (b).  Since the mean of an expenential process 

with rate vC is l/(vC) this formulation leads to the same expected pro- 

cessing times as the previous derivation.  This model also retains the 

essential characteristic of a random quantum interval which is divided into 

an overhead and a processing segment.  The state dependent loss factor 

(l-f»m) will be applied as it was in Section 2.5. 

Let N, the number of terminals making requests upon the system, be 

40 and let the time between the completion of one request and the sub- 

mission of the next be an exponentially distributed random variable with 

a mean of 20 seconds (X = 1/20). Let the overhead loss fraction, f, be 

.02. All parameters required for TSM0D3 have now been specified and one 

may oxamine cases (a), (b), and (c).  Figure 5.6 is a graph of the per- 

formance increases achieved by using these three plans.  An examination 

of the equations of Section 2.5 indicates that for cases (a) and (c) an 

increase in the processing rate, C, is equivalent to a reduction in the 

paging rate.  Thus the curves for cases (a) and (c) coincide.  Case (b) 

achieves a better level of performance because an increase in C has a 

direct effect on the overhead delay associated with each page fault. 
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5.3.4 Discussion of Results 

Each of the three models used to study the hypothetical performance 

improvement problem concentrates on a few important features of time- 

shared computing systems.  In the previous sections each model was modified 

so that it could be applied to a problem for which it was not specifically 

designed.  For example, TSMODl and TSM0D3 do not include subsystems 

which can represent input/output activities.  TSM0D3 is the only formula- 

tion which considers the effects of both a finite user population and an 

overhead degradation which is a function of system state.  TSM0D2 and TSM0D3 

both require that service requests be exponentially distributed random 

variables, and neither of these two models includes an explicit mechanism 

for studying the effects of paging overhead. 

By carefully redefining some important parameters one may apply all 

of these models to the per^onnance improvement problem.  Each model allows 

the analyst to focus on a different aspect of systeui design.  The results 

clearly show that performance may be significantly improved by either in- 

creasing the processing rate or decreasing the paging rate. All three 

graphs also indicate that the performance improvement curves level out 

after an initial interval of a higher rate of change. 

All of the models point to additional studies which should be made. 

For example, none includes a functional relationship between the size of 

core and the paging rate.  All of the models predict significant performance 

improvements if one can lower the paging rate, but the amount of additional 

core which woulo be required to cut the paging rate in half (by doubling 

Ä) is beyond the scope of these analytic models. A simulation such as 

the one presented in Section 3.5 can help with this problem.  In addition. 
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a carefully designed experiment on the current configuration could help 

quantify this relationship. 

The following list illustrates some (of the many) additional consider- 

ations which would be required prior to an actual performance improvement 

decision:  the relative costs of more versus faster memory; comparative 

reliabilitites of different memories; maintenance problems; vendor 

compatability; purchasing and leasing agreements; interface problems with 

other system components; predictions of future usage patterns and tech- 

nological improvements; changeover costs; other subsystem improvements. 

The use of analytic models as a performance analysis tool can help reduce 

uncertainty in some of these dimensions and thereby improve the decision 

making process. 

5.4  DYNAMIC SYSTEM CONTROL 

All of the models applied to the performance improvement problem of 

the previous section show that response time will increase with the paging 

rate. As the number of users competing for core in a virtual memory sys- 

tem grows the paging rate increases. At the end of a quantum interval, 

systems which do not have a virtual memory structure must often save, in 

external storage, that portion of a user's program and data which Is cur- 

rently in core memory.  The saving of one core image in external storage 

and the retrieval of a different one is usually called swapping. Swapping 

need not occur at the end of every quantum because core may be large enough 

to hold several tasks at one time. As the load increases, and more users 

demand service, the swapping rate, like the paging rate in a virtual 

memory design, will increase. The overhead associated with paging and 

swapping will cause response time degradation. 

ii  im tmAi i  I . , , u. . . -. - -  —-         .      »UM ■  
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Flgures 2.3, 2.6, 2.7, and 2.9 show that as the arrival rate of 

requests grows, expected response time increftses in a nonlinear manner. 

This degradation, as a function of the arrival rate, occurs even when 

there is no overhead associated with swapping or the processing of page 

faults. With overhead present the effects are magnified. The phenomenon 

of thrashing, which was described in the previous section, is an extreme 

example of what can happen when overloadii^- occurs. 

Quick response to short requests is a major goal of time-shared 

computing systems.  To mainLain a reasonable level of response all such 

systems must limit the input rate of requests.  For example, at Carnegie- 

Mellon a Logon Priority system Limits the number of interactive terminal 

users to a pre-set limit.  If someone tries to join the system and the 

number of people currently logged on is equal to the limit, the new user 

is denied access until the system can fovce one of the active users to 

leave.  The algorithm which makes the decision,about which job should be 

forced, considers  factors such as pre-assigned priorities and the length 

of time each of the current users has been connected to the system. The 

algorithm chooses a user to be forced from the system and then notifies 

him that he must leave within the next tvo minutes or be automatically 

terminated.  If the algorithm is unable to find a user who meets all 

criteria tor automatLC tenrination, the new user is denied access.  Once 

a user has been allowed to logon to the system he is guaranteed a minimum 

length of time during which he may use the computer. 

McCredie (1967), Wulf (1969), Wilkes (1971), Mills (1971), and others 

have suggested that dynamic load adjustment procedures be used to control 

the performance of computing systems.  CTSS, a time-shared system developed 

 . 
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at MIT, has such an automatic load leveling capability built into the 

operating system. Wilkes (1971) presents an analysis of the stability 

of such a system and Mills (1971) describes the algorithm in use at MIT. 

The objective of this section is to illustrate how analytic models such 

as those developed in Chapter 2 may be used as an integral part of such 

a control System.  Clearly a model for this purpose should not require 

a great deal of ccxnputer time to solve, or any gains resulting from the 

use of the model could be lost in the extra overhead required to support 

the control algorithm. 

5.4.1  The System 

Figure 5.7 illustrates the structure of the combined computer and 

user subsystems.  Of all potential users, only a fraction will want to 

interact with the computer at any particular time.  The system will deter- 

mine how many active users, N, will be able to establish a connection 

(logon) and then use the computer.  The procedure which performs this 

control function will be called the Terminal Allocation Algorithm (TAA). 

Appendix E contains a listing of the SIMULA program used to investigate 

a few (of the many possible) different versions of a Terminal Allocation 

Algorithm. 

The global structure of the program is illustrated in Figure 5.7. 

The data gathering facilities and the central processor and input/output 

subsystems are slightly modified versions of the simulation used to study 

TSM0D2 in Section 3.4.  The changes from the previous model are the addi- 

tions of multiple input queues (based on the priority of a job) for each 

subsystem, and the modification of the overhead portion of each quantum 

h^a^...^,w^. ...'..■-...., ^ ,.. 
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to include a constant part and a portion which is proportional to the 

number of tasks waiting for service.  Users at terminals are represented 

by a SIMULA activity, called USER, which creates requests and inputs them 

to the computing subsystem. After each request has been completed the 

user gathers statistics about his response time and then either creates 

a new request or leaves the system when all requests have been satisfied. 

Each user is inactive while waiting for the computer to finish a request. 

Another SIMULA activity, called the GENERATOR, creates users who try to 

gain access to the system.  The Terminal Allocation Algorithm decides 

whether or not a new user may logon to the system. 

5.4.2 TAA1 

The first Terminal Allocation Algorithm evaluated is the default, 

or null, algorithm.  Every job requesting service is admitted to the 

system regardless of the current load. After an intitialization period 

during which 2 0 users submit a total of 100 requests, new users logon 

to the system at a rate slightly greater than users leave the system. 

All users have the same statistical properties and the same priority. 

The line labeled TAA1 on Figure 5.8 shows an increase in average 

response times as a function of time. As the number of users in the system 

increases, average response time increases in a nonlinear fashion. 

5.4.3 TAA2 

Using knowledge gained from the behavior of models like those of 

Chapters 2 and 3, one may formulate a simple but effective Terminal Al- 

location Algorithm based upon a limit to the number of people using the 

system.  The only value needed by the algorithm is the number of users 
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currently logged onto the system.  If the number is greater than the 

control limit any new user is denied access to the system. Whenever a 

current user finishes work and leaves the system a new user is allowed 

to logon if one is still waiting. 

The line labeled TAA2 on Figure 5.8 shows that the simple strategy 

of controlling the input rate to the system will keep response times 

within design limits. Any idle time generated by limiting the maximum 

number of users may be allocated to lower priority tasks which may be 

interrupted with the arrival of more higher priority work. 

5.4.4  TAA3 

The third Terminal Allocation Algorithm is based upon the type of 

load balancing mechanism in use on the CTSS system at MIT.  The control 

algorithm of TÄA3 samples the state of the system periodically, and 

dynamically adjusts the maximum number of users who are allowed to logon 

to the system.  Between sampling intervals the algorithm acts exactly like 

TAA2.  If a user tries to logon, and the number of users already active is 

greater than or equal to the control limit, the new user is denied access 

to the system. 

The philosophy underlying dynamic adjustment of the maximum number 

of users is based upon the observation that users have widely varying modes 

of interactive computer usage patterns.  The parameters describing usage 

and input rates vary with time.  If these parameters were stationary with 

respect to time one could choose a value for the maximum number of active 

users, Nmax, and never change it.  If all Nmax users are performing editing 

types of functions the central processor may be underloaded, and the system 

■  iiiiilriiliiMlilliiiiii ii  ...-■^»«UI.U.MI».,» , .. . ... ^mwiiirtiimirt.'rit «». 
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could support more users. Alternatively, if all Nmax users are compiling 

and running large programs the system could become overloaded.  A control 

system that monitors the actual state of the system and balances the load 

accordingly can increase the number of users when there is excess capacity, 

and can reduce the input rate of requests when overloading occurs. 

At each sampling instant TAA3 estimates values of the input rate of 

requests from the active users, the sizes of the queues in front of the 

central processor and the i/o system, and the rate at which tasks request 

service from the i/o subsystem.  Using these values, TAA3 estimates both 

the number of tasks currently being processed by the computer and their 

characteristics.  Using TSM0D2, the tandem queueing model developed in 

Section 2.4, the control algorithm then computes what effects the addition 

of another active user would have on the state of the system.  If the pre- 

dicted value of the system state is within the control range, the maximum 

number of users allowed to logon is increased by unity.  If the addition 

of one more active terminal causes the predicted system state to exceed 

the control limit, the maximum number of active users is not changed.  If 

the measurements indicate that system state has already exceeded the con- 

trol values, the maximum number of active users is decreased by unity. 

However, in this implementation, no users are forced to leave the system 

before their session is complete. 

It is a well known fact from the field of control theory that control 

algorithms, such as the one outlined above, are subject to severe instabili- 

ties.  Since both the input and service ^unctions are stochastic processes 

all of the parameter estimates are random variables subject to statistical 

fluctuations. Wilkes (1971) examines the stability of a simplified version 

hm -:■■■-' -—-  ■   ■    ■ ■ ■ -■-■;-—-■■■^inmiiMilHili V i 



-141 

of the previously described dynamic control algorithm and demonstrates 

that instabilities are possible in practical situations.  In addition 

to the variance of the parameter estimates, tie time delays between 

changes in the control variables and their resulting effocts make the 

proper choice of a control strategy a difficult problem.  The theoretical 

treatment of this control problem, as applied to computer systems, is an 

area of future work which is not treated in the present development. 

The particular version of TAA3 used in the following simulation is 

listed in Appendix E as activity ESTIMATOR.  A common method of estimating 

non-stationary random variables is to form an estimate at each review 

period which is based on a combination of the past information and the 

current observations.  TAA3 uses the following exponentially smoothed 

estimator for all state variables: 

(5.6) ^ = (I-*) . ^ + a . sk>k+1 

Xk is the value of the estimator at the end of the k  period, and S. 

is the sample observations which occur during period k+1.  In the simula- 

tion, of - l/3 and the time period between each sample was 25 seconds. 

These values were found by trial and error to smooth the statistical fluc- 

tuations of the process, and to track changes in the parameters of the users. 

For this simulation each new user draws the parameters, which describe 

his usage mode, from probability distribution functions.  Two parameters 

characterize user behavior: 

(1) the mean value of the service request 

(2) the mean time a user spends in the "think" state between 

the completion of one task and the submittal of the next. 
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Each user's parameters remain constant over the duration of his 

terminal session, but each request and each thinking interval are random 

variables drawn from a distribution characterized by the constant parameters. 

Thus the total user load will change as the parameters change. 

5.4.5 Discussion of Results 

Table 5.1 presents the results of a simulation of this environment 

using TAA2 with the maximum number of users set at 30.  Table 5.2 presents 

the results of a simulation of the same environment using TAA3, the dynamic 

control algorithm.  S is the estimated average number of tasks being pro- 

cessed by both the centra1 processor and the i/o system.  TAA3 tried to con- 

trol this value at 3.5.  The average number of interactions processed during 

each reporting period of 400 simulated seconds is approximately the same al- 

though TAA3 is slightly higher (381 versus 392).  The average number of 

tasks in the system and their average response times are significantly larger 

for TAA2 than for TAA3 (4.56 versus 3.54 and 4.83 versus 3.84).  P is the 

average percentage of idle time spent by the central processor. TAA2 had 

significantly less idle time (.12 versus .19) than TAA3.  This time is not 

wasted since it can be used for background tasks of lower priority. 

By controlling the average number of tasks demanding service, TAA3 is 

able to significantly improve system performance.  TAA3 uses TSM0D2, the 

tandem queueing model, to evaluate the effects of proposed changes in the 

control variables.  The magnitude of the potential performance improvements 

indicate that future investigations should examine the problem of designing 

an allocation algorithm which is optimal with respect to stability and per- 

formance objectives.  The goals of this section were to illustrate how such 

an algorithm can use analytic models, such as those developed in Chapter 2, 

and to investigate what orders of magnitude of performance improvement one 

may expect from the implementation of static and dynamic control policies. 

i^,,. ;
--.-..,..,L-.^...-^-  hi^^.^Mt.^hiit^^^^.«..^... . . 



•   - 

-143- 

l(U[ 

ao CO m <r> CM CM m r>- a> 
CM rH i-i o o O o o o 

00 CM     (M CO 
CM 

CM 
■-I 

o CM 
i-l 

en 
o 

oo 
o 

•«I 
CM CM o -* 00 >+ >t r». 
CO CM oo en o vO in >* •^-i-HCMONCItOvOOi-l^-iriCO 

\or->oooOvor^r-tao<4-u-icMio 

cMcocoiovor-»ooioincocnco^{n^^-^-coi»»^- 

CM     O     f^ 
•-•    o    0 

CO     00 
00    *t 

r>>.    io 
m   to 

,   vO    t^    CM iwl  ^    o    r^ so o 00 CM i-l o 
ao oo vO «M i-l «y. rH 

O O o 00 I-l r^ CO 
f-l CM CO f> Psl o\ r- 

vO 
vO 

CM CO vO    c^    oo    m COCO^^COCM^-COCO 

vo    o 
m    <* 

m    in 
in    to 

sJ-     CM     i-t 

m    4J 
« 

a»   i-i 
^    2 xi     6 a    -H 

o ä I-l CO I-l f! vO r^ ON o to oo r^ i-i VO VO m vf) CM VO ■-I 1 ■n o vO CO oo OV Ov m «* <*• <N vo CM OV r» m CM CM i-l 00 vf «* CO <• CO co CO co CO CO -* CO CO CM CO CO <t CO <* CO o 

CM      CO m    vo 00     ON     O     r-l     CM m    vo oo    <?< 

vO 

r-ltM 

CM 

o 
CM 

CM 
in     ca 

iidaa 



-144. 

■ Cti| 

00 a\ <M  CM 
«M   T-4 

00  CO  CM 0^  l*»  f"<  <* 
<->      r-l      ^      r-l o 04  CM 

vO  CM 
CM  i-l 

00 
CM •-<  CM  rH 

IOSI 

o 
CO 

ON o 
o 

00 
o o 

CM 
st- ir» st 

st o oo 
St  ^H CO 

OX 0^ 

CM  CO  CM  CO  CO 

OX  rH 

vO 
o 

ä 
•4-  VO  ^  r-l  CO  oo  >d- CO  CO  CO  CM  «M  CO COj CO CM   F-4   • 

'col m co 
•  ■ 

CM  CO 

ON 
o O ON f» 

in r^ oo 
• • • 

St CO CO 

CO 
CO  ^t 
00 f-t 

o r^ i-i ^H 

m  CM  i-4  P^ 
vO  i-i  vO 
m <-i r*. 

o St 
m 

(M  r- 
00  Ov 

o 
CM 

-^cocorHinmcoco CM      ^-      CO      CM      CO      COI   CO 

VM 
o 
u 
0) 

I 

CO < I 
ttri 
o 
a 

cv|      O 
•    ^-1 

in    4J i 
0)       r-( 

•5    2 
CO       -H 
H     CO 

o 
(0 

3 
CO 
<u 

CM r^ vo ao CM oo 
p* f< # IO tH di 
st    ^    ^-    m    co    i-i 

vO 
on 
CO 

^ l-H r» CM m vO CO l-l vO o OS o> 
CM CO St m CM CM 

ao 
CO 
CO 

m 
CM 
en 

CM r-l CM 
OV r-H in 
St      St       St 

m 
vO 
St 

CM    m 
OV      rH 
CO      00 

r- 
r^ 

00     Ov 
oo    i-i 

o 
o 
st 

I CM      CO in    vo oo    ov    o    i—i m    vo ao    a> 

<-(|cvl 

>X 

o 
CM 

CM 
cn     in 



-145. 

5.5  CONCLUSIONS AND FUTURE WORK 

Chapter 1 contained a discussion of the role of analytic models as 

one of the techniques useful in the analysis of computing systems.  The 

interactions of the analytic approach with simulations and empirical 

studies were explored, and the work of the following chapters was placed 

in context with other studies. 

Chapter 2 presented the derivation of a number of performance mea- 

sures of models of time-shared computer systems.  Simplifying approxi- 

mations, developed for some of these results, were compared to the exact 

expressions.  Each model focussed upon a different feature of current 

time-shared implementations.  Each of the models is easy to understand 

and use because the results are not complicated to compute, and because 

the structure of the model is obvious to the user.  Since relatively few 

(five to nine) variables  specify each system, the models are easy to 

control in sensitivity studies. 

Chapters 3 and 4 presented evidence that the models are robust in 

the sense that the behavior they predict is observed in a wide range of 

related systems (both simulated and actual).  The previous sections of 

Chapter 5 illustrated how such models may be used by designers and managers 

of computer systems.  The example of Section 5.2 is a case study of how 

system implementors were guided in an important decision concerning the 

design of part of the operating system of C.mmp, the Carnegie-Mellon multi- 

mini -processor.  Thus the models meet a numSer of the criteria, stated by 

John Little in Chapter 1, required of models which are to be used by de- 

signers and managers. 

 ■  ~'".^l....™ -.      ,      ^~,.:JiL*^ä»*iM)JL,-.n 
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One of the characteristics of much of the current literature dealing 

with analytic models of computer systems is that it lags developments of 

actual systems.  Increased communication among those who design systems 

and operations research specialists who create new models would help to 

roduca this time delay. Many currently available models are directly 

applicable to present design problems.  For example, the area of the al- 

location and scheduling of resources in networks of computer systems is 

one in which models, such as those of Chapter 2, could be helpful. 

Analytic models are greatly simplified abstractions of real computing 

systems. Therefore it seems appropriate for future model builders to 

concentrate more on simplifications which lead to useful approximations 

of important system problems, then on exact, but very complicated, solu- 

tions to minor modifications of existing structures.  Naturally such ap- 

proximations must be carefully studied to determine their domain of ap- 

plicability. 

Analytic modelling ir, only one of .any technique, available to those who 

want to analyze, measure, improve, and create better computing systems. 

One of the goals of this report is to help place this approach to system 

modelling into perspective as an important tool, not a panacea, for com- 

puter scientists. 

iMäitkMM ■■-"■'-•■''-J 
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APPENDIX A 

DERIVATIONS 

This appendix contains a number of derivations which were referred 

to in the body of the report, but did not fit in any previous major line 

of development.  The first section presents helpful, but non-standard, 

methods of calculating the first and second moments of non-negative ran- 

dom variables. These results are used in Section A2 which contains the 

correct expression for the second moment of the truncated exponential 

quantum interval of the Coffman and Kleinrock (1968) model, and in A3 

which contains a derivation of the distribution and moments of 0 . the 

remaining service time distribution of a quantum in progress when a new 

job arrives.  Section A4 presents a solution to the Poisson source, ex- 

ponential service with constant overhead associated with each quantum, mod- 

el analyzed by   Adiri and Avi-Itzhak (1969) and Rasch (1970).  The 

solution method is the one used in Chapter 2, and the results are identical 

to those obtained by Adiri and Avi-Itzhak who used more complicated trans- 

form methods. 

Al.  THE FIRST TWO MOMENTS OF A NON-NEGATIVE RANDOM VARIABLE 

The well known technique of integration by parts forms the basis for 

the following analysis. Integrals may often be simplified by application 

of equation (A.l). 

(A.l)  rbudV = uV|b - rbVdu 
a a 

If X is a non-negative random variable having finite first and second 

2 
moments, E(X) and E(X ), and a distribution function FY(t), then: 
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(A.2)     E(X)  =   r(l-FY(t))dt 
0        X 

0 en 

(A.3)     E(X  ) = 2(: t(l-FY(t))dt 
0 X 

Proof 

Apply   (A.l)   to  (A.2) with  the  following substitutions: 

u =  1-Fx(t) du =  -dFx(t) 

dV = dt V =  t 

(A.4)     fe0(l-Fv(t))dt -  f(l-Fv(t))r -   rt(-dFY(t)) = ftAF(t)) = E(X) 
J0        X X 0        0 X 0      X 

Apply  (A.l)  to  (A.3) with the following substitutions: 
■ 

u =  1-Fx(t) du =  -dFx(t) 

dV =  It dt V =  t2 

(A.5)     2-J0Dt.(l-Fv(t))dt =  t2•(!-¥(t))\a> -   fV-C-dF  (t))  =  E(X2) 
0 A        '0 0 

The term f (1-Fv(t)) l" is zero because f(l-F  (t))   ^ f^ydF  (y) 
x 10 A t 

CD 2 I 00 

and lim  f ydFv(y) = 0 since E(X) exists.  Similarly t .(1-F (t)) 
i   X A   I n 

is zero because f2.(l-FY(t)) ^ fVdF (y) and lim  J*y dF (y) = 0 since 
Ä      t t-»«0 t 

2 
E(X ) exists. 



-149- 

A2.  THE SECOND MOMENT OF A TRUNCATED EXPONENTIAL QUANTUM INTERVAL 

The second moment of a quantum interval is an important quantity in 

the Coffman and Kleinrock (1968) article.  They assume that service quanta 

have the following distribution function: 

0 
(A.6)  FQ(t) =/l-e 

-ut t < 0 
0 <: t < q 

t ^ q 

The second moment of Q may be easily calculated using equation (A.3). 

(A.7)  E'Q ) = 2 Jj:(l-F (t))dt 

= 2 fte-Utdt + 2 f+t.ödt = 2 fte-Utdt 
0 q 0 

Apply  (A.l)   to  (A.7) with the following substitutions: 

u = t 

dV = 2e"Utdt 

du = dt 

V = -2e -ut 

E(Q
2)=z2t£^|q + 2   ^^ut^ 

0     u    0 

^.ia-e-, •/■qe 
u 

-uq 
—(2uq+2) 

...^...*^.*^,-*i^M**.  . _. H inMMMT-ilHfiMliitftrtrimiri 
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The final form of equation (A.7) corrects equation (16) of Coffman 

1 
and Kleinrock in which they assert the following incorrect result: 

2   2   e"Uq 2 2 
(A.8)  E(Q ) = -2 - ^-^-(u q + 2uq+2) 

u    u 

INCORRECT 

A3.  REMAINING SERVICE TIME - Q 

Given that a job from a Foisson source enters a system and finds a 

job being served, what is the distribution of Qr, the time from the arrival 

of the new job until the one being served finishes? Section 2.2.4 contains 

a discussion of this quantity.  Conway, Maxwell and Miller (1967), Chapter 8, 

pages 146-147, present a derivation of the properties of Qr.  Since this 

quantity is very important to the results of Chapter 2, and since Shemer 

(1967) did not realize that Q had a distribution different from other 

quanta, this section will present a derivation of the distribution of Qr, 

its Laplace transform, and its moments.  The following derivation differs 

substantially from Conway, Maxwell and Miller, but the results are the same. 

Let Y be the elapsed time from the beginning of a service interval 

until a new task arrives. A well known result of renewal theory is that 

2 
if a job finds another being served when it arrives, then: 

(A.9)  P(y ^ Y ^ y-Hiy) = t(l-Fx(y))/
E(x) ]dy.  V ^ 0 

where F (y) is the distribution function of a service interval. 

Coffman, E., and Kleinrock, L., "Feedback Queueing Models for Time-Shared 
Systems," Journal of the Association for Computing Machinery, Vol. 15, 
No. 4, Oct. 1968, p. 557, equation (16). 

2See Morse (1958), p. 10, or Avi Itzhak and Naor (1963) for ulscussions 

of equation (A.9). 

 ,  
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service  interval of  length X 

/ 
X 

/' 

time 

new job 
arrives in system 

The probability that Q will be greater than some value t, given that 

Y=y, is just the probability that X will be greater than y+t, given that 

it is already equal to y. 

(A. 10)  P(Qr > t|y=y) = P(X > t+y|x > y) 

1 - Fx(t4y) 

1 " Fx^ 
;  t,y ^ 0 

By subtracting this result from unity one gets the conditional distribution 

function for Q given Y. 

F (t+y) - F (y) 
(A.ll)  F  |Y(t)=P(Qr^t|Y=y)= \   _F (y)

X   ;  t.y^O 

Ft+dt+y) - Fv(t+y) 
(A.12)  P(t ^ Qr ^ t+dt|Y=y) = 

X 1 _ F (y)
X  ;  t,y a 0 

Multiplying equation (A.12) by (A.9) leads to the following joint probability: 

(A. 13)  P(t £ Q £ t+dt and y <: Y ^ y+dy) = 

(Fx(t+dt+y) - Fx(t+y)) dy 

E(X) ;  t,y ^ 0 
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By integrating equation (A.13) over all values of Y, one gets the 

probability of the single event, (t ^ Q ^ t+dt). Using the definition 

of F (•)» one sees that the numerator of (A.13), integrated over all values 

of Y is just dt multiplied by the probability that X will be greater than t 

(P(X > t) = 1 - Fx(t)). 

(A. 14)  P(t s Q <: t4dt) - J   P(t £ Q S t+dt and y <: Y £ y4dy).dy 
r y=0      r 

(1 - Fx(t)).dt 

E(X) 
,  t ^ 0 

Equation (A.14) is the result presented earlier as equation (2.8). 

The first moment of Q was called ql in Chapter 2. The value of ql is 

easily obtained from (A.14) by using equation (A.3). 

(A.15)  E(Qr) = ql = rt.(l-Fx(t)).dt 
0     E(X) 

= E(X2)/(2.E(X)) 

The Laplace transform of Q    is: 

(A.16)     L      (s) =  E(e"sQr) 
r 

oo    e"st.(l  - Fx(t))-dt 

t=0 E(X) 

1 - Lx(s> 
s  E(X) 

Moments may be obtained from Laplace transforms of random variables by 

differentiation. 

k     k d L0 (s) (A.17)  E(Qp = (~l). % 

ds s=0 

MMIJ    "«li-Min^iiiii     iii'.i-.r.'   ir'-;i^riM,iiiiiili-nilllnVtti ■ 
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Using equation (A.17) one may show that the following result is valid for 

the k  moment of O . 
r 

fcf, 
(A. 18)  E(Qk) - E^X  )   . , 0 ^r'       (k+l).E(X) ' k=1.2,... 

Equation (A.18) was presented previously as equation (2.9). 

I A4*  SSJ°N
M^EL

0ISS0N S0URCE, mmmnkh  SERVICE. AND CONSENT 

An assertion of Chapter 2 is that the methodology based on simple 

expected value arguments will handle more complex models than those 

previously published.  The attempt by Rasch (1970) to use this technique 

in an exponential model with constant overhead was unsuccessful not 

oecaase the method lacked power, but because Rasch failed to recognize 

important state dependent relationships.  He neglected the fact that T 
i* 

tne wait in queue preceding service quantum i, is dependent on T 

I Adiri and Avi-Itzhak (1969) solve the Poisson source, exponential 

,        service model with a constant overhead delay associated with every quantum. 

|        Figure Al illustrates the structure of this model.  The distribution func- 

tion of the length of a quantum, Q, follows. 

j0 t < d 
(A. 19)  FQ(t) JuS*«'*) T St ^d-fw 

l1 t < d-4w 

Every quantum is divided into two segments.  The first interval, repre- 

senting overhead delay, is a constant d. and the second is a random vari- 

able representing useful processing time.  The maximum length of the second 

interval is a constant, w. The  total processing request, V, exclusive of 

UHf^.LJ.l.^:.. ■,- . l_^ , : „ , ■■ -■■ .-.It- -..._  
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overhead delay, Is exponentially distributed with mean l/v. If a request 

is not satisfied in a quantum, the job leaves the processor and rejoins 

the end of the queue.  If a request is completed within the time limit w, 

the task leaves the system and a new quantum may start. 

P(Task completes service) = 1-e 
-vw 

Polsson    I 
source with  \ 
rate X jobs  V 

/ 

constant overhead 
delay d 

0 0 0 0 

service 
interval of 
maximum 

-^^length w 

P(Task rejoins queue) g e 
■vw 

1-e 

FQ(t) 

1- 

•vw. 

-»t 
d d+w 

Figure Al 

Structure of the Adiri/Avi-Itzhak Model 

Adiri and Avi-Itzhak employ generating functions and Laplace trans- 

forms in non trivial ways in their derivation. The purpose of this section 

is to show that careful application of simpler, more easily understood. 
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techniques will also yield exact solutions to problems of this complexity. 

Transform techniques are more powerful than the methods of Chapter 2 since 

higher mome-. .s may be computed by differentiation.  Transforms may also 

be numerically inverted to obtain the distribution function of a random 

variable.  The price paid for this greater power is increased complexity 

which makes the results harder to understand and use. 

The model of Figure Al is another example of an M/G/1 queueing system. 

Like the early part of Section 2.3, the first part of the Adiri/Avi-Itzhak 

work is the calculation of total service request, expected ».'unber of tasks 

in the system, and the first two moments of the quantum interval.  In the 

following discussion (AA.n) will denote equation n of the Adiri/Avi-Itzhak 

work. Minor symbol changes maintain notational compatability with Chapter 2, 

-vw 
Define:  a = e 

(AA.12)  E(V) = l/v + d/d-a) 

(AA.19)  p = l-p0 =» X.E(V) < 1 

2   2 
(AA.21)  E(M) = p + X E(V )/(2(l-p)), where M is the random number 

of tasks in the queue and in 
the server 

The expected wait in queue until the task enters the server for its 

first quantum interval, E(T,), given in equation (2.31), has the same 

derivation in this model as in the system of Section 2.3.4.  Equation (2.31) 

is identical to (AA.49). 

Adiri and Avi-Itzhak base their recursive equations on the random 

variable, K., the number of queued tasks behind the tagged job as it enters 

the server for the i  quantum.  E(K1) is the sum of three terms:  (a) = the 

expected number of arrivals from the exponential input source during T,; 

.. ,. irttitiililrtä 
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(b) = the expected number of jobs that return to the queue that were in 

the queue in front of the tagged job when it arrived; and (c) = the 

expectation that the arriving job finds the server busy (Probability p) 

and that the job in service returns to the queue. 

(A.20)  EOCj) = (a) + (b) + (c) 

(a) = \'E(T1) = X-ql-(E(M)-p) + X-p.q2/(2.ql) 

(b) = e"V,W.(E(M)-p) = (y.(E(M)-p) 

(c) requires careful treatment analogous to the derivation of ql 
r 

the expected remaining service time of the job in service when an arrival 

occurs. The probability that this task will return to the queue is not a 

as it is for the other jobs. The fact that this job has received a random 

amount of service when an arrival takes place alters the probability that 

it will return for additional quanta.  Shemer (1967) neglected this fact 

as well as the fact that ql ^ ql. 

Multiplying equation (A.11) by (A.9) gives one the probability of 

the joint events that (A) an arriving task finding the system busy enters 

y time units after the start of the service quantum in process and (B) 

waits less than t time units until that quantum is finished. 

{F (t+y) - Fn(y)} 
(A.21)  P(y <: Y £ y+dy and Q <: t) = -* 2  

r a. 

Evaluating this expression for t ■ d4w-y and integrating over the 

allowable range of y values (0,d+w) gives the probability that a job in 

progress when a new arrival occurs finishes before the maximum quantum 

limit and therefore does not rejoin the queue.  Call this event "U". 
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(A.22)  P(D) = ^ J^lF^d-fv) - FQ(y)]dy 

1   iJ+W.-i   -VW   „ , MJ 

4  0 

ql - (d+w)'e 

qi 

The probability that the job does rejoin the queue is thus: 

(A.23)  l-P(D) = -^^ 
q1 

Multiplying this result by p, the probability that the server is busy when 

a new job arrives, and substituting in equation (A.20) leads to the expected 

number of tasks behind a job as it enters the server for the first time. 

(A.24)  EOCj) = (E(M)-p)-(f^-X-ql) + p-i.X-q2 + 2 - a'(d+») }/(2  ql) 

To get this result in the exact form of Adiri and Avi-Itz'aak one need 

only uxpand the quantity Xql and use eq. (AA.12) and eq. (AA.19). 

(A.25)  Xql = X-(d4(l-a)/v) = X-E(v)•(1-^) = p'(l-ff) 

Substituting p-Cl-cc) for X'ql in equation (A.24) leads to (AA.39).  The 

authors note that their form of the result was derived from a generating 

3 
function "after a rather lengthy and not painless process." 

The equations for E(K.) and E(T.) for 1=2,3,4,... are easily derived, 

as in Chapter 2, once the initial values for i=l are specified (equations 

(A.25) and ^2.31)). 

3Adiri and Avi-Itzhak (1969), p. 644. 
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APPLNDIX B 

LISTING OF TSMOD2 

INTEGER   LOOP; 
FOR   LOOP:»!   STEP   1   I'.iTIL   2«   10 
GIMULA  iJEfii;; 
INTEPiER   |fII)IIX/:iEEn/K/C0lJIJT/STATE/STAPT"P/f'AXriiST0!^R1; 
REAL  SU.MS^GUMSS^SM.MC^SlKlC^SIJf.RS^oUMn^SUimR; 
REAL  r>TATTII!E,EXITPRü3,STATE!riTEG'<AL/-1ARK,TEMp#orT; 
REAL :W\K?.,CP\ HLE^CPREST; 
REAL I'lARKI^lOtnLE, lOlEST; 
REAL   ARRAY  nATA( 1: 21,1: ? ), I JTK 1: ? '), T'T^ ( T :-"'); 
I NTERER ARRAY  TRAMS I TPI ÖT( 1:71) / S ERVI CEP i r>T (1121), r.TATE PPOR (liV.)} 
INTEGER  ARRAY   INT1(1J2^); 
SET  CPQDEUEJOUUEUE; 
ELE'IEÜT   PROCESSOR, I OSYS/'.AI M; 
300LEAH   INITIALIZE; 

PROCEDURE  RESET; 
^EfilN 

INITIALIZEt-FALSE; 
COUNTt«0) 
MARK: "MARKa : -STATT I M.E: =T I' T. ; 
su(isi"SUiisst«3Uf'.ct«su{icct«."i)rlnst«';u^n:»3i!!'iRn!«f?.n; 
3TATEiriTEGRALt«CPinLEs»lv1inLE{»0.^; 
TOR  K:=l  STEP   1   III1TIL   21   nn 

fiEGIM 
TRANS I TP I GT( K) j -S^'V IGEDI ST( K): -?!TATE PROP, (K): =n ; 
nATA(K,l)t«0ATA(i;/2)i«n.

fi; 
END; 

END OP PROCEDURH r,^S[:T; 

 in niiiriiw -■"^■■■—"■„a,,, n,,,,...,, 
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ACTIVITY TA3K ; 
BEGIN 
REAL  ARRI VALTIME,SERVICE!IME^CLEI; 
300LEAN   PASSI; 

PASS 1:»TRUE; 
ARRIVALTIME:=Tir.E; 
HISTO(STATEPf;O!J/INT5/STATE/{Ti:iE-:!APJ'.)*100.'>); 
ACCUIUSTATEMJTEGRAL.I'ARK^TATE,]); 
IF   I [)LE( PROCESSOR)   THEN   ACTIVATE   PROCESSOR  APTER   CURRENT; 
WAIT(CPQUEUE); 
TEI1P:»TlllE-ARRIVALTirE; 
SUMR:=SlJUR+TEiiP; 
SUHRR:»SU;,.RR+TEf1P*TEI'iP; 
SUIlS:=StJiiS+SERVI CETIME; 
SUf^SS:=SUU,SS+SERVICETIiIE*SERVirETir.E; 
3UrJC:=SUi'1C + CYCLEl; 
SUnCC:»SUMCC+CYCLEl*CYCLEl; 
5UHRS:«3Uf'.RS + TEUP*SERVICETIME; 
HISTOCTRANSITniSTJNTl.TEnrM); 
HISTO(SERVICEniST#IMT2/3ERVICETIf'E/l); 
HISTO(STATEPROB,IUT3/STATE/(TIME-nARK)*10n.O); 
INDEX:»SERVlCETinE*2n.n+1.0; 
ACCU'U STATE I ilTEGRAL, MARK, STATE,-1); 
INDEX:-IF   IIIDEX   LEO  21  THEN   INDEX   ELSE   21; 
DATA( I NDF.X, 1): »OATACI NOEX, 1)+TEMP; 
OATA(lfJDEX/2):=«nATA(ir"r)EX,2) + 1.0; 
COlJtlT:=»COUIlT+l; 
IF   (INITIALIZE   AND   COUNT  EQL  STARTUP)   THEN  RESET; 
IF   COUNT  EQL MAXCUSTOMERS  THEN  ACTIVATE  MAIM; 

ENO  OF   ACTIVITY  TASK; 

ACTIVITY  GENERATOR; 
BEGIN 
GltHOLOniEGEXPd.r^SEEO)); 

ACTIVATE  NEW  TASK  AFTER   CURRENT; 
GO   TU  01; 

ENO   OF   ACTIVITY   GENERATOR; 

utmum«* 
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ACTIVITY   COMPUTER; 
P.EillN 
P.HAL  OVEmiEA%rU!AMTA| 

Cl:lZXTfiACT  PIRSKCPQUEUE)  '.'HEM   TASK   nn 
15 EG I II 

C2tOVERHEAt>;«NORnÄL(,'.)5,,ni5,,fEE"); 
IF   PASS1  THEM 

'iETIM 
CYCLEl:=Tlf,E-ARr:r'ALTI'iF. + nvEnMEAn; 
PAS31:»FALSE; 
END; 

QUANTA: »NOill 1AL(. 05,, n 15# r.EEH); 
3E^VI CETI flE : «SEUVI CET |ME*1HAMTA; 
H()LO(OVE!<HEAn*QUAMTA); 
INCLUOEdASK^ lOQUEUE); 
IF   lOLE(IOGYS)   THEM  ACTIVATE   ICSYS  AFTEH  rüH^EMT; 
EMU 

OTHEfU'lSE  '«EGIIJ 
ACCHfKCPlDLE^flAUKa^CPREIIT, 1.0); 
PASSI VATE; 
ACCUH(CI»inLE#!1ARK2,CPRE8T,-1.0); 

EMI); 
GO   TO   Cl; 

END  OF  ACTIVITY  COMPUTER; 

ACTIVITY   I0PR0CE5S0R; 
ilEGIM 
REAL   I03ERVICE; 
101:   EXTRACT  Fl PST( IOOIJEUE)   '.MIEf!  TASK  nn 

DEGIM 
I 0 f» E U VI C E: »U N I F m f; ( 0 . 0, .!!, 3 F E 'l) ; 

HOLn(IU3ERVlCE); 
TEMPt'DMIFORIKn.n^.n^^frf-n). 
IF   TEMP   LEQ  EXITPRO!;   THEM   ACTIVATE   TASK   ArTFn   ri'PnrMT 

ELSE  I] EG IM 
IMCLMPEdASI^CPQHEIIE); 
IF   nLE(PnOCE330P)   THEN 

ACTIVATE   PP^CESSO^  AFTER   CHRRF.MT; 
END; 

ENH 
OTHERWISE   BEGIN 

ACCUIKIOIDLE/IAUK^, IDPEST^.O); 
PAS3IVATE; 
ACCUlU lOIDLE/IARKS, IOOEnT,-l,n); 
EfID; 

GO   TU   101; 
EMI)   OF   ACTIVITY   IUPRÜCESSOR; 
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END   ÜF   ACTIVITY   in PROCESSOR; 

READ   (SEEn#STARTUP#nAXCUSTOt1ERS); 
WRITEC     SEEDr-'^EEP, •     STARTUP: »',STARTUP, 'MAXCHSTOMERSt »SMAXCUSTOMERS); 
EXITPRORt«.125; 
INITIALIZE:»TRUE; 
FOR  K:=l   STEP  1  UNTIL  20  PO 

UEfilfl 
INT1(K):=«1.5*K; 
INT2(K):».1*K; 
INT5(K):»K-1; 
END; 

PROCESSOR   :»  NEW  COMPUTER; 
IOSYS:-NEV;   IOPROCESSOR; 
MAIN:»CURRENT; 
ACTIVATE   NEW  GENERATOR   AFTER   CURRENT; 
PASSIVATE; 
ACCUMCSTATEINTEGRAL/IARK^TATE^); 
ACCUM(CPinLE/MARK2/CPRE5T/0.n); 
ACCUfKIOinLE^IARKSJOREST^.O); 
WRITEC   TIME   AT  RUN   COMPLETION   IS1,TIME,'   NUMBER   OF   TASKS   PROCESSED   IS', 

COUNT); 
WRITEC   CURRENT STATE   I S' ,STATE,'AVERAGE  STATE   IS1, 

STATE INTEGRAL/(TIME-STATTIflE) ); 
TEMP:»SUMS/COUNT; 
OUT:=»SaRT(SUMSS/COUNT-TEMP*TEMP); 
WRITEC SAMPLE AVERAGE AND SD OF SERVICE TIMES ARE', TEMP,OUT); 
TEMP:=(COUNT*SUMRS-SUMR*SUMS)/(COUNT*SUMSS-SUMS*SUMS); 
OUT:»(SUMR-TEMP*SUM5)/COUNT; 
WRITEC REGRESSION ESTIMATE OF SLOPE AMP INTERCEPT ARE' ^TEMP^UT); 
TEMP:»SUMC/COUNT; 
OUT:=SQRT(SUMCC/COUMT-TEMP*TEMP); 
WRITEC SAMPLE AVERAGE AND SD OF FIRST WAITING TIMES ARE', TEMP, OUT); 
TEMP:»SUMR/COUNT; 
OUT:»SaRT(SUMRR/COUNT-TEMP*TEMP); 
WRITEC SAMPLE AVERAGE AND SD OF RESPONSE TIMES ARE',TEMP, OUT); 

PROÜARILITY PROCESSOR IS IDLE IS',CPIDLE/(TlME-STATTIME)); 
PROBABILITY I OSYSTEM IS IHLE I S ', I 01 DLE/(TP'.E-STATTI ME )) ; 
THE TABLE DISPLAYS RESPONSE AS A FUNCTION OF SERVICE'); 
INTERVAL','AVERAGE R','NUMBER OF POINTS'); 

WRITEC 
WRITEC 
WRI TE (' 
WRITEC 
FOR K:» 

END 
END 

1 STEP 1 UNTIL 21 DO 
BEGIN 
TEMP:»IF PATA(K,2) GET 1.0 
ÜUT:»K/2Ü; 
WRITE(OUT,TEMP, PATA(K, 2)) ; 
END; 
OF SIMULA BLOCK; 
OF PROGRAM; 

THEN DATA(K,l)/nATA(K,2) ELSE O.P; 

j-^""'•-"--•-"•"■'•■-■  ,  
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APPENDIX C 

LISTING OF TSS/360 MODEL 

:-C ,1 
1 .Tf r,m    >TAKTCLOC»S,SI .Tr'L»T^INK,W<:MF;Afj| 
tXTfV-^L   PKOCETU^f    LTSTC,LpWI .T ,; A^E 'C^E-^ULLT Af^LM 
..E.AL   CVl "Hf ÄO»VMTKF A' ; 
Rn^l.rA"      AIT, ir)jrLT»f,t,AAlT, p(.I\'".| 
r jTKr.E:-    AXUSF.^S, 

ffC^COTAB^NTKir^, 
'tlXTASKSOf 5l«PL nT(Lt;SpAf,L«;.rHA-.'ik:ui)J 

SCHUfTAftC^T^If'S  »  ^-iJ 

IMtlGFR   A^RAY   Sr^rnTAiMllSCHEnTAHF.MT^ItSiltQ)! 
r.Tr-.ft?    JÜH3rTA5Kc.,   •-AGEiUSCi :#0'iA'TA , lOLtVLL i 

PWPRITV,   TT 'LSLIr;t,v^xCH, 
MÄX^G^Oi   '"T"1.   TSi^Oi   MPRE   ,      PACtnELAYj 

t 'KGr« SEEni,sri|,)2»srf:o3,T»AfitevEu.sEEö4,sttos»sEi:o6fSEi!:o7; 
UIST   '-ATA<C U'^'EL^LCSPAr.lSiFAGEOf-LAYjMAXTASKSONOlSPLt^T.'-Ank-ERS, 

TR4c^.L^vl^L•ülMTI^E»ovEP'^^An,T^|^<lvMTMEA^|W<^• EA-VJ) » 
f-^'AT   fATAP^lNKli, •   CNAM.EL'?»,!-,'   LCS  PARES»,Is,'   ':>EC   PAGE   DELAY' 

»H,»   DIS«3   TASKS',Al,ItMi'   USERS'»?^,»   L'VFL   T^ATE'» 
Id,'   HIN'?   Si'ULATEO   TIMtSTV^i '   OVE'-rtFAl   FARTO»«, 

*1,1IT3,»   SECS   THIMK   TIME'fn«,li»   MSEr   ru'lPiiTF   Tp-E», 
Is,«   PAGE   -Ol^K   SETSAI.DJ 

UOGAl,   LAHEL   N^OATäLFFTI 
P;Un«TTValj 
Tp TSLICF«?» 
iJ'JA'-.TA»? J 

."'AXCRaAl 
MAJfPG^OigJ 

TSE' :is7i 
MPRr a-1 j 

lotf veu«9i 
MAKCSCHI LiJL^TAHLUSCHlFüTA^E'iT^IFS^CnFÜTAH) | 

rfT.\TA| 
-'EA^CDATA,    yOOATAirfTH *PITE(DÄTA,nATAPHI;MT> J 
iJlG!'; 
t\TFr,r;n   AR?AY   PA5ERG «(«iP,»A6ERQH0.'.,MANV(i j iAXUSE"5»i> J 
INTEGFR   ?AGEfc.iMTRV,sfcfr| 
FO"   StE:3»2l!'?3   DO 
*: r'i.'L A  Hr G^ 
"EAL   STA^TIuLETT^i 
ARRAv   T^lV»AVG,MAKn,STAp<TPAGF ,A|.L, I JLETI 1E{-253^1)       J 
ARRAY  ACTUAL0UANTl,KNGTM(-2ll7'l) I 
iR^AY  rA.iLTS(-2:^l)i 
rn;MAT   r.AB^C'USR'.nV.?,'       USER',?I3i»       PFSP ' , 06 ,11 '       CCM^ ' , Db , 3 , 

'     wRKSl^IS»1      'JPWu»,!}»'     fAUUTS«,I3f '     DI!;P',I3, 
'      ELInM?,'      TASKS',! 3,«      'iSHKO'.rS'      TOTttG » , t 4 , Al) I 

I-TFG'.R   PMOCF^URE   FAIRSHAPFI 
FAIRSHAREaEMlrRdCSPACES/MUHOrTAb-iS) I 
FLFMEVT   EtlNTfcFNAU^CHenuUEP, 

ELTIMER, 
ei,GlJPÜFS'JA"M«i 
ACTH/ETASK ; 

FL^-MEMT   ARWAY   EtUS^S ♦ T« J (IJ HAX ISFRr-), ELPAGLPHOcESS^R (1J C^U'^ELS ) I 
SET   DISPIO,   Pl'JPEX, 

FLlCIbLFLl'T, 
INIACTNEI. I'Ti 

\CTIVITY   TASK(   USEH^Jh   )l 
P TFGE«   IISERN'IMI 
BEG! ^ 
FTHVAT   PG0UT(,PTW»p9t2, »      T ASK ' , I 3, I 7 , '   PAiJESOUT   AT   TrtAITf,Al)| 
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BOOLEAN PACEWMTi lOBOUNOl 

INTEGER QUANTAUIIOiWOtKINSWTi PAUErAULTSi 
^^SS?^1' ^wPACESREQ, PACECOUNT, PAGESQuT, NEWPACr.PAGESTOCETl 

BEG I N 
REAL VMTIMEPtECEj 

VERYTOPOFTASKi 
PAGEFAULTS«OUANTAUSED«9i) 
TlHELEFTiVMTlMn 
PAGESTOGET « NEWPACESREül 
TOPOFTASKI 

VHTIMEP|ECEiTDELEFT/(PACESTOCET*!)I 
FOR NEWPACF«(!?,l.PACESTOGET> Dfl 

BEGIN 

IF TIHEC0UNT*VMTIMEPIECE LSS SCHEDTAB(STE,TIMESLICE) THEN 

CANC£L(ELTIMER)| 
HOLOJVMTPEPIECE)! 

LISTO{ACTUALOUANTLENCTH,0,100,0,5,VMTIMEPIECE)| 
TlMECnu^T«TlMECOUr4T*VntiMEPIECEi 
END 
ELSE BE8IM 
COMMENT TIMER INTERRUOT COMES HERE   I 
LISTOUCTCALOUANTLENGTH, 0,180,0,5, 
pASsIVATJ

CHEDT''B(STE,TIMESLlCE).TlMECOUNT)J 

GO TO rnPOFTASK» 
ENDj 

IF NEUPACE EOL PACESTOGET THEN GO TO TWAIT| 
PACEENTRY.PAGEEMTRY*!! 
PAGEROHOWMA»;Y(PAGEENTRY)«ll 
PAGERawHO(PAGEENTRY)«USERNüMi 
PAGEFAULTS^PAGEFAULTSvti 
PAGEWAITiTRUEl 
STARTPAGEwAlTiTlMEl 
ACTIVATE EL^UEUESCANNER DELAY PAGEDtLAYJ 
PASSIVATE 
FNOI 

TWA IT | 
COMMENT  ISSUE TWAIT I 
PAGESOUT ■ PAGECOUNT • FAIRSHAREi 
IF PAGESOUT ßTR 9  THEN BEGIN 

STARTPAGEwAlTiBl 
PAGEENTRYiPAGEENTRY*ll 
PA6ERQWW0<PA0FENTRY)iUSrRNUMj 
PACERQHOWMANY{PAGEENTRY)if.PAGESOUT| 

IF TRACELEVEL GTR 2 THEN WHITE(TIHE/1000IUSERNUMIPAOESOUT,P6OUT)I END OF PAGINGOUTI i   «. vW ,r«wwTif 
ACTIVATE ELUSER{USERNUM) AFTER CURRENTl 
ACTIVATE ELOUEUESCANNER AFTER CURRENTl 
TRANSFER(TSI (USEKiNUM), |NACTI VELIST) I 
TlMECOUNTi3| 
PASSlVATEl 
GO TO VERYTQROFTASK 
END 

ENOl 
PRflCEOURE FILEINEI1GLIST( LTSI )| 

ELEMENT LTSIl 
INSPECT LTSI WHEN TASK DO 

9E6IN ELEMENT 7SIINLIST» 
INTEGER LTSIPRII REAL LTSISSTILOSAL LABEL OUT| 
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LTSIP^IsSCMECT4;?fSTF:|P«?in«lTV)l 
LTSlSSTiSSTj 
TSir-LlST«Hf.4ü(ELr'IBLFLlST)| 
rO^   TSII^LIST^SUCdSIlNLlST)   ^MIL6   EXISKTSl INLIST)   00 

INSPECT   TSUAIST   WMEN   TASK   DO 
IF   LTSIP?!   LSS   SCHEDTABCSTE.PHJORITY)   THEN 

REGTN  P^CEOECTSITNU^TiLTSni 
GO   TO  OUT  END 
ELSr 
IT LT51PHI ECL SCHEPTA8(STE|PRIPR1TY) AND 

LT^ISST USS SST THEN 
HLM'i  PRECtDEiTSIPLlSTitTSI)} 
ftO   TO  OUT   END I 

TRANSFER (LTSlirUGIBUtU ST U 
OUT   I   END   OF   MLET'EUIGUIST; 

ACTIVITY   TIMER» 
BEGIM 
BOOLEAN FORCETj 
FOP''AT TYME('TMP»,D«>,2,»  TASK », I ?, y3,S2, X2, S^, X3, «PRIO»! TV" 'iI3, 

X2|»IST« ,|06,1.X2,»STE« ♦ • I<5»X2»Sl5# Al) i 
PAGOUTC'PSF'.ü1».!!»  TASK«,13,I7i' PACESOUT AT TSENDMöi 

• PAÜFS NF-XT TIME I.ADl 
TOPOFTIME«! 
FORCEDiFALSE» 
INSPECT ACTIVETASK JHEN TASK 00 

»EGIN 900LEAV U5I0|  INTEGER PAGESOUTi  LOCAL LABEL LJ 
OLClOBlOROUNni 
TIMELEFTiTlMELFrT-SCHEOTABtSTE.TIMESLlCE)! 
r3JANTAUSEü«CUA^TAÜSED ♦ U 
IF QUAMTAUSEO GE^ ^CHEDTABCSTE»QUANTA) OR 

PAGECOUNT GT« SCHEOTAB(STE.WAXCR) OR 
NErtPAGE GEO SCHEOTAH(STE»MAXPORO) THEN BtSlN 

STftSCHEDTABfSTE.lF PAGECniJNT ST* SCHE0TA8{STE,MAXCR) 
T^EN MPRE ELSE TSE^P)! 

SSTslF SCHEDTAR(STEiDTR) mi   *   TWEi 0 ELSE 
TlME*SCHEOTAB(STE»0TR)* 

IF SST LSS 0 THEN SST ELSE ^1 
CA1JCEL(ACTIVET»SK)| 
F1UEINELIGLIST(ACTIVETASK>| 
PACESOUTsPAGECnUNT-FAlRSHARE» 
FOPCtD-TPUFl 
IF PAGESOUT GTP 9   THEN 

BEGIN 
STAWTPAGEwAITt^l 
PAGEENTRY«PACEtVTRY*ll 
PAGERawHO(PACPENTRY)fUSERNUM| 
PAGERDHOWMA'.V{PAGEE^THY)»»PAGESnuT» 
PAGF.STO'".ETal'AV(.i,PAGESTnGFT-NFwt»AGE* 

PAGESOUTÄUNlFO^Mt.Z/.T.SEEDS))! 
IF TRACELEVEL Sn 2 TWE^ 

^RITE{TlME/lH00,iJSERNUMiPAGESOUT,PACESTOGET,PAGOUT) I 
GO TO L 
E^^'D OF PAGING OUT I 

FND ^F TlMEaLlCEENOI 
PACiESTOGFT«PAGrSTÜGET-N£wPAGE) 
I      I 
lOROUNOflF NEWPA8E GEQ SCMFDTAn(STFiIOLEVEL) 

TWEM TRJE EISE FALSE I 
TT'ECOUNTB/I 

TF TRACELEVEL 8TR 1 THFN 
*.RlTf(TYMJ,TlME/t00B|USERNUM»IF OLDIH THF^ MO» LLSE 'EX'I 

■■A-"3kB*L'r-----* • t*~LWJa• ...:-..„ .^^^ii^i; 
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11 J2!8y5i0,!SSN !10' E(-SE ,
EX»ISCHEDTAB{STC,PRIORITY),ssT/taaa.sTE. 

IF roRCEn THEN «TSENH TORCEO» ELSE » »)I 
ENDI 

ACTIVATE ELOUEUESrAMER AFTER CURRENTl 
PASSIVATEJ 
GO TO TOPOFTIHEP 
END) 

ACTIVITY USERnDfPRTY.CONVERSEiTHJNKSECOMOSfCOMPÜTEMEAN, 
TRANSACTlONSiWORKSETMEAN)I 

INTEGER iD.PRTYjTHlMKSECONOSiTOANSACTIONSjWORKSETMEAN» 
BOOLEAN CONVERSE' 
REAL COHPUTEMEANI 
9EGIN INTEGER  I | 
REAL TEMPI 
TSI{lO)«NEk TASKHO)! 
NUMOFTASKS a NUMOFTASKS*!I 
FOR I»{liliTRANSACTIONS) DO 

BEGIN 
INSPECT TSI(IO) WHEN TASK DQ 

BEGIN 
IOBOUND»IOÜFLTI 
STARTTIMEBTIMEI 
VHT1ME«NEGEXP(1/C0MPUTEMEAN,SEE01)I 
WORKJNCSET^RANOlNTCa.Z^WORKSETMEANiSEEDZJI 
NEWPAGESREQ»MAX(0,WORKlNGSET«PANOlNT((?,PACECOUNTiSEEO5))i 
STE«PRTY»iF CONVERSE THEN 0 ELSE 10| 
IF I EOL 1 THEN SST»0 ELSE 
SST"SCHEDTAB(STE|DTP)*TIME* 

IF SST LSS B THEN SST ELSE 0 

FILEINELIGLIST(TSI(I0))| ' 
IF WAIT THEN BEGIN WA|T.FALSEI 

ACTIVATE ELQUEUESCANNER  AFTER CURRENT ENQl 
PASSIVATE  I 

IF CONVERSE THEN BEGIN 
TEMP.{TIME«STARTT1ME)/1000| 
LlSTO(ALL|0|30al2,0,TEMP)| 
LISTO(FAULTSI0I5!M.I?(PAGEFAULTS»,01)| 
IF VMTIMF LSS 35 AND NEWPAGESREQ LEO 2 THEN 
L|8TO(TRIVI0#380#,«9|TIMP) ELSE 
IF V^TIMF: GT" 25P1 eH MEWPACESREO GTR 10 THEN 
Ll5TO(MA«Oi0i300,2ielTEMP) ELSE LlSTO(AVC»0|300,1,0,TEHP)| 
ENH OF COLLECTING (JATAI 
IF TRACELEVEL GTR 0 THEiv 
yRlTE(GARR,TlME/1000#USERNUMlIl(TlME-STARTTlME)/l000lVMTIHE/l000, 

wORKINCSETiNEWPAGESREQ.PAGEFAULTS,CARDINAL<0ISPI0)* 
CAROlNALfOlSPEX), 

CAR0lNAL(ELlGlBLELIST),NUH0rTASKS,PACEC0UNTlPA6ESUSE0)| 
MOLD( THINKSFCONHS • 1000 )| 

END OF INSPECTION! 
END OF TRANSACTION LOOP| 

REHpVE(TsniD))| 
T£RMlNATE(TfI(|0))| 
NUMOrTAlK8iNÜM0fTA8K8«ill 
TERHIMATE(CURRENT)| 
ENDl 

ACTIVITY PACEPROnESSftR(J)| 
INTEGER j| 
BEGIN 
INTEGER USERNUM,NUMPAGES,I| 
TOPOFPAGEPRncESSORl 
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N ^A^SiPAGE^QuO' ^lANVdn 
JSE^ ^..'MtPACERTUwOd)! 
PiGfE   TNVsPAGrE'.'TfJY-ll 
FCK   ^(l.l^PACECWTRV)   00  PEGp' 

PAr.EMoWHOC I »«PASFHrjwMOC 1*1) i 

PAGERüH0WMAMV(I)sHACE«OHOWMAMY(I*l)|   EMQi 
BEGIM     tK'TESER   If   PAClNGOPERATirNS» 
RtAU   GETREüiJESTTIMtl 
GETHElÜF"STTIMrsT|M£> 
PAGlNG0PERATn\S«AeS(NUKPA5rs)//8*l   i 
FOR   I«(l,l,PAr.I\COPERATlON'S)   00 

H0LD(U^lrc?M(25,7t,l25,»,';E£O3>)| 
PACESUSEO  s  PAGESUSEO  ♦   NUMPAGESI 
ASPECT  TSKUSERNUM)   WnrN  TASK  "0 

HEGI'v 
PAGEWAIT«F4LSEI 
PAGECOuMaPAGECOUM + wuMPACES  I 
IF STARTP/^EWAIT GTh 9   TW£N 

LlSTnfSTAPTPAGE,^,3«8,.?# 
lN0 <GfTPEQiJESTTlHE.STARTPACEWAIT)/100?)| 

IP PPWAJT THrN 
BEGIN 
PPwAIT«FALSf| 
ACTIVATE   ELr:ijruES(;A\KER   AFTFR   CÜRRCNTl 
IF   IDLING  TME i 

BEG I'.' 
IOUr GiFALSEi 
LISTP<lüLrTlME,a,3M0,,l,(TIME*STARTIOLETlME)/120^ 

two I 
E^ni 

PASSIVATEI 
50   TO  TrpOFPAGEPR^CESSOR 
Ev-Oj 

ACTIVITY  OUEUESCAN^LRi 
BEGIN   P-TECER   Ii 
RF*U   LASTTlHETWPUi 
TOPnFf)UEUESCANNFR| 
PHR   I«<l#l,CHANigtUS)   10   IF   PAGEEMTRY   ST«   0   THEN 

ACTIVATE   ELPA^EPROCESSORdM 

PASSllJlTE|LlNTERNAUSCHEDULEW  0ELAV   <TIf1E^ASTTlMETHRU)»OVER«EAD| 
LASTTIMETHRUaTl"t| 
GrTn TOPOFQJEUESCA.NME:» 
EMD   OF   O^SCA^NERI 

ACTIVITY   ^TER?>IALSCHFOULFRj 
^EGfM 
ELEMEVT  UTSU 
r.TFGFR   PRIi 
BOOLEAN   BEHINOONLYJ 
BCPLEAN  PROCEDURE  EMTRINCECRITtilAl 

E^TRAMCECRITrHJA» 

IF   ?^9^^Da'F.0F^SE!INAL<nISPEX,   LSS  M^TAS^P^ISPLIST 
PROCEDURE   MOVETnOTSPUSTC   LTSl    )| 

FLEMENT   LTSli 
T'JSPECT   LTSl   WMfN   TAS'<   QQ 

BEGIN 
LOCAL   LABFL   F^liMQPLACE I 
SST«1F   SST   LSS   '»   TMFN   ^   ELSf   SSTf-TJ'^l 
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LTS1PRI TH^N 
GO FOUNOPLACE 

IF lOHOUNP THEN 
BEGIN 
INTEGER LTSIPRll 
ELEMENT INIOJ 
LTSlPRl«SCHEnTAB<STE,PRJORITV>J 
FOR lMOiL*ST(OISP|0)|PRCO(r!IOJ WHILE EX|ST{|NIO) DO 

INSPCCt INIO WHEN TASK DO 
IF SCHEDUBCSTEiPRIORITY) LEO 

9EGIN FOLLOW<U'IO,LTSU> 
PRECLDECMEAOtOlSPIOj.LTSl) 
END IOPOUNO CASE 
ELSE TRAfJSFER(LTSIiDlSPEXJ| 

FOUMOPLACEl 
END OF MOVE TO OISP LISTI 

LOCAL LABEL SORTOlSPATCHi 
TOPOFINTERNALSCHtnULE»! 
BEHlNnONLYiTRUEi 
TOPOFSEARCHI 
IF FMPTV(ELICIBLtLIST) THEN CP TO SORTOlSPATCH| 
LTSI»FIRST(ELICIÖLELI3T)J 
FOR LTSI-SUCaTSl) WHILE EXIST(PRED(LTSI)) 00 

INSPECT PREOdTSI) WHEN TASK 00 
IF NOT PACEWAIT THEN 

BEGIN 
IF BCHfNOONLY AND SST CEO Tp'E 

THEM CO TO TSlNOCOOn 
ELSE IF E^TRA^CECRITERIA THEN 

RECIM 
MOVETWISPLlST(TASKJ| 
CO TO TOPOriNTERNAlSCHEOULER 
ENG 
FLSE GO TO SORTDISPATCWI 

TSIN06000I 
ENOl 

IF NOT BEHINOONL^ THEN GO TO SQRTOISPATCHL 
BEHINOONLY-FALSEI 
GO TO TOPOFSEARCHl 
SORTOISPATCHl 

IF NOT EMPTY(ÜISPEX) THEN TRANSFER(FIRST(OISPEX)IOISPEX)I 
BEGIN 
COMMENT 

THIS  IS THE OISPATCHER PART OF THE SCHEDULER 

ENOl 

I 

EXIST(DTSI)| 
EXIST(DTSI) DO 

INTEGER II 
BOOLEAN BUSYPAGERSl 
ELEMEWT OTSU 
FOR OTSI«FIRST(OlSPIO>,SUC(DTSI) WHILE 

FIRST(DISPEX),SUC{DTSI) WHILE 
INSPECT OTSI WHEN TASK DO 

IF NOT PAGEWAIT TMEN 
IE8IN 
ACTIVETASK ■ DTSIl 
ACTIVATE ACTIVETASK AFTER CURRENTl 
ACTIVATE ELTIMER DELAY SCHEDTAR(STEi TIMESLICE )i»TlMECOUNT I 
PASSIVATE   I 
GO   TO   TOPOFPJTERNALSCHFOULFRI 
ENOl 

BuSYPAGERSiFALSfl 
FOR   I««l|XiCHANNELS)   00   IF   NOT   IDLE(ELPAGEPROCESSOR(1))   T^EN 

BUSYPAGERS"TRUn 
IF   BUSYPACERS   THEN; 

liWiii-iiiilifirifttirihriY ..■:...... , ■ tui'i.tuiwim 
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■•5F-G1N 
PP.!AIT«TRUF| 
IF  \CT  EMPTYftLIRHLELTST)   THE^: 

RtGlM 
IOLINGBTRUEJ 
STARTlDLETP'EtTIHE 

IF PAGEENTWV LFO * TME^ WAIT«TRüF ELSE 
ACTIVATE EUmUESCANNER AFTER CUiHtMTl 

PASSIVATEI 
r.r» TO TOPOFINTERNALSCWEDULE» 
E'D or DISPATCHER PWl 

rMr, pF INTERMALSnurj JLERI 
rOl'M|NT   CONTRfJLLP't CODE CO^ES *EXT| 

«FGl ' 
I Ttf.ER II 
STARTrLOCKaCLOCKl 
PAGFE 'TRVsPi 
lOLPJCaF ALSEl 
PPi*AlT s FALST | 
KOFLT « TRMEJ 
yAlT«TRUE» 
PAGFS"SED « PI 
«JEE^lsSEE^I  SEEÜ2»SEFD1«17I  SEEr3«SEE01»7ll 
SEET4sStE0»23l   rEF05«SEE0»3lI   SEE06sSEEn«&7l  SEEC7«SEE0«51| 
NUMOFTASKS « .?| 
ELQUEliESCANNER a M|W 'SUEUESCAMNERI 
EUT1V'ER « MEW TIMER  | 
ELI'TER^AUSCHEDDLFt« = NEW INTERNALSCHEOULERi 
TDR IB(1,1,CHAMMELS) DO ELPAGEPi'OCEFSORtUsME'J PAGEPR^CES^O6 (I) I 
FCR Is(l,i,;1AXUSt.RS) W 

EU0SER(I)«NEW USER(|.5#T«üEiTHIM<»VMTMEAN»5a»WSMEA^)| 
ACTIVATE ELUStRd) AT I«3|^0 

E-Dl 
wnLD(   SIHTIME   •   65»0^   )| 

L'RITEC ••••••••••       REAL   TIME   IN  SECS'.CLOCK-STARTCLOCK.«   •••••••)| 
LPT'T(ALLi0i3'«'0»2.id,l1?»'*LL')l 
I P'5r<T(TPIV,0|30*l,2f,l,f%'TRIVlAL»)I 
ip3l\T(Av6»0»3^0il,iflll|97,«AVERAGEMl 
LPPrTf^ARD^^BC^if'.^T.'HARU»)! 
I psivTJSTARTPAGE.e.JBet^il.^^TlME  TO  START  PAGE   FETCH»)! 
LPR^T(ini.tTIHE»f#3B«Mlili^»*lOUE TIMF WHILE ELIGIBLE TASKS')! 
! »»UTfrAULTS,^,50,1,2,1,Bi'PAGE  FAULTSMI 
I pf;l\T(ACTUALQOA^,TLL.vGTH,P,lffc)»id,5i,99i »ACTUAL COMPUTE SLICES») I 
FM?   ef   SIMULA   r?LOCK 
FNn or nxusERS LOOPI 
r-O   GETDATAI 
' O'^ATALEFTI 
f N^   OF   SCHEDTA?   DECL 
EN?   CF   E"EPYTHIf,r, 
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APPENDIX D 

LISTING OF SCRIPT PROGRAMS 

Figure 4.1 is a block diagram of the User Script used for the 

response time experiments reported in Sections 4.2.1 and 4.3. Figure 

4.3 is a listing of TESTl, the first program in the script. The fol- 

lowing two listings are of TEST2 and TEST3.  The terminal output of 

an actual user following the script is also included. The arrows on 

this latter listing indicate the places where users must insert input 

data to the script system.  This example output was used as part of the 

training of the users who participated in the experiment. 

DIMENSION IB(8),IE(8) 
2 1=0 

PRINT 899 
899 FORMAT(/'PLEASE ENTER N IN FORM J*l0**10 

READ 900,N,NN 
900 FORMAT(211) 

N=N*10**NN 
IF (N.EQ.O)  GO TO 10 
PRINT 901,N 

901 FORMAT (,TEST2: CYCLES'',17) 
CALL CLOCK(IB) 
DO 1 J=1,N 

1 1=1+1 
CALL CLOCK(IE) 
TRAN=36000*(IE(l)-IB(l))+3600^(IE(2)-IB(2))-f600*(IE(3)-IB(3)) 
TRA»=TRAN4«0*(IE(4)-IB(4))+10*(IE(5)-IB(5))+(IE(6)-IB(6)) 
TRAN=TRA»f.l*(IE(7)-IB(7))+.01*(IE(8)-IB(8)) 

PRINT 903,IB 
903 FORMAT('START TIME= ',2ll,':',211,':',2ll,'.',211) 

PRINT 903,IE 
904 FORMATCEND TIME^',211,': ' ,211,' : ' ,2ll,' .' ,211) 

PRINT 905,TRAN 
905 FORMAT ('RESPONSE TIME^'.FS^) 

GO TO 2 
10 PRINT 906 

906 F0RMAT(,TEST2 NOW COMPLETE.  YOU ARE IN COMMAND MODE') 

STOP 

END 

iaLäiaiiiima.,.,,-.^-..^,.^.-^ ■^-■.^^■t^i 
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REAL M1,M2,M3,M 
DIMENSION IB(8),IE(8),C(20000) 
DIMENSION Ml(30,30),M2)30,30),M3)30,30) 

100 PRINT 899 

899 FORMAT(/,TEST3:  PLEASE ENTER N IN FORMAT 12') 
READ 900,N 

900 FORMAT(12) 
IF (N.EQ.O)  GO TO 10 
PRINT 901,N 

901 FORMAT(,TEST3: ITERATIONS^ ,13) 
CALL CLOCK(IB) 
DO 6 LFI.N 
DO 50 1=1,20000 

50 C(I)=I 
DO 2 1=1,30 
DO 1 J=l,30 
Ml(I,J)=2 
M2(I,J)=3 

1 CONTINUE 
2 CONTINUE 

DO 5 1=1,30 
DO 4 J=l,30 
M=0 
DO 3 K=l,30 

3 M=M4M2(I,K)*M1(K,J) 
M3(I,J)=M 

4 CONTINUE 
5 CONTINUE 
6 CONTINUE 
CALL CLOCK(IE) 

TRAN=36000*(IE(1)-IB(1))+3600*(IE(2)-IB(2))-rt00*(IE(3)-IB(3)) 
TRAN=TRAN-f60*(IE(4)-IB(4))+10*(IE(5)-IB(5))+(IE(6)-IB(6)) 
TRAN=TRAN+.1*(IE(7)-IB(7))+.01*(IE(8)-IB(8)) 
PRINT  903,IB 

903 FORMATCSTART TIME=,,2I1,,:,,2I1,,:,12I1   '   '   211) 
PRINT  904,IE ' 

904 FORMATCEND TIME=I,2I1,,:,,2I1,,:',2I11    '   211) 
PRINT 905,TRAN 

905 FORMAT('RESPONSE TIME=,,F8.2) 
GO TO  100 

10  PRINT  906 
906 FORMAT(,TEST3 NOW COMPLETE.     YOU ARE   IN COMMAND MODE') 

STOP 
END 
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BOOl 5.1 TSS AT CMU   TASKID=0022 OU/07/70 19:02 3900 SDAPOOSI» 
USER00 
18:56 07 APR 70-BENCHMARK TFS7S ARE TO BE CONDUCTED AT 1900 - 2100 .. 

SHARE PUBPRO/S132J123/PUBPRO 
CDS PUBPR^USERLIBCSYSPRO) 
CZAFW60 ENTER DSORG VIP OR VSP. DEFAULT: MEMBER GIVEN OLD DSORG. 

»ABEND 

t-ac )£-*(   )r*0*  ♦»-.  /-«(♦'! 0023 

KU 
INITIAL 
CZUFW001 AT 19:01»: 37: 6 USERS, 0 TTYVS, 6 27IJ1VS, 0 10507S 
BF03 SOURCE.TESTA COPIED AS SOURCE.TEST1. 
BF03 SOURCE.TESTB COPIED AS SOURCE.TEST2. 

BF03 SOURCE.TESTC COPIED AS S0URCE.TEST3. 

BF03 SOURCE.FFCLDCK COPIED AS SOURCE.FCLDCK. 

CZUiWOOl AT 19:04:53: 6 USERS, 0 TTYVS, 6 27«»1VS.  0 1050VS 
A053 fiODIFICATIOrjS? ENTER Y OR N. 
N 
BO16 LP FOUND NO ERRORS. 
0000250 E *** ILLEGAL EXPRESSION. OPERAM) NOT FOUND WHERE REQUIRED 
0000250    X=Y( 
n 

LINE NOISE. REENTER 

0000251 E *** ERROR IN RELATION OR LOGICAL OPERATOR OR CONSTANT 
0000251    Z=X.Y 
n 
A053 MODIFICATIONS? ENTER Y OR N. 
Y 
iD/250/251 
ÜR,100,2100 
0000100 DIMENSION IB(8)/IE(8) 
0000200 DIMENSION Ml(30,30)^(30,30)^3(30,30) 
0000300    100 PRINT 899 
0300UOO 899 FORMAT(/V    fESTl:  PLEASE ENTER N IN FORMAT \2V) 
0000500 READ 900^1 
0000525 900 F0RMAT(I2) 
0000550  IF (N.EQ.O)    GO TO 10 
0000600 PRINT 901,^1 
0000700 901 FORMAT(V    TEST1:  ITERATIONS, 13) 
0000800 CALL CLOCK(IB) 
0000900 DO 6 L=1,N 
0000910 DO 2  1=1,30 
0000920 DO 1 J=l,30 
0000930 M1(I,J)=2 
000091*0 M2(I,J)=3 
0000950 1 CONTINUE 
0000960 2 CONTINUE 
0000970 DO 5 1=1,30 
0000980 DO k J=l,30 
0000990 M=0 
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0001000 DO 3 K=l/30 
0001010 3 Nt=mi2(l,K)*Ml(K,J) 
0001020 M3(I#0H1 
0001030 4 CONTINUE 
00010U0 5 CONTINUE 
0001050 6 CONTINUE 

SoS ÄÄlEW^ 
0001300 TRAN=TRAN+60*(IE(U)-IB(U))+10*(IE(5)-IB(5) +(IE(6)-IB(6)) 
00011*00 TRAr4=-mAN+.l*(IE(7)-IB(7))+.01*(IE(8)-IB(8)) 
0001700 PRINT 903#IB Ä1.  „„,.,„„ ..^ 
0001701 903 FORMAT^   START TIME= ^211^:^211^:^211^.^211) 
0001702 PRINT 901»,IE •.« • « i,,, «. « «ii\ 
0001703 90»i FORMATS   END     TIME= ^211^:^211^:^211^.^211) 
0001704 PRINT gOS^TRAN 
0001800 905 FORfV\T(V RESPOtÄE TIME= V.FS^) 
0001900 WRITE( 1,800) NJB^IE.TRAN 
0001950300 FORMAT(2H 1,18,811,811^8.2) 
0002000 GO TO 100 

0002051 906™RMAT(5    TE.ST1 NOW COMPLETE. YOU ARE IN COMMAND MODEV) 
0002052 sir>p 
0002100 END 
11 
A053 MODIFICATIONS? ENTER Y OR N. 

►N 
BO16 LP FOUND fD ERRORS. 

HEST1 

TEST1: PLEASE ENTER N IN FORMAT 12 
•01 

TEST1:  ITERATION    1 
START TIME= 19:08:1*9.86 
END     TIME= 19:03:52.36 
RESPONSE TIME= 2.50 

TEST1:  PLEASE ENTER M IN FORMAT 12 
dplO 

TEST1:   ITERATION 10 
START TIME= 19:09:05.15 
END     TIME= 19:09:31». 35 
RESPONSE TIME=        29.20 

TEST1:  PLEASE ENTER N IN FORMAT 12 
• 00 

TEST1 NOW COMPLETE.  rOU ARE IN 0OM1AND MODE 
CHCIW STOP 

»FTN TEST2/Y 
Ä053 MODIFICATIONS? ENTER Y OR N. 

■*N 
BO16  LP FOUND NO ERRORS. 

• IEST2 

TEST2:   PLEASE ENTER U IN FORM J*10*«K 
-%11 

TEST2:  CYCLES= 10 
START TIME= n:10:i»9.68 
END TIME= 19:10: (»9.70 
RESPONSE TIME= 0.02 

TEST2:  PLEASE ENTER N IN FORM vMO'W'K 
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► 25 
TEST2:  CYCLES= 200000 
START TIME= 19:11:1«». 36 
END      TIME= 19:12:08.27 
RESPONSE TIME=        53.91 

TEST2:  PLEASE ENTER N IN FOSM J*10**K 

TEST2 NOW COMPLETE.CYOU ARE IN COMMAND MODE 
OICIW STOP 

► F7N TEST3/Y 
Ä053 EDIFICATIONS? ENTER Y OR N. 

.N 
BO16 LP FOUND NO ERRORS. 

»JESTS 

TEST3:  PLEASE ENTER N IN FORMAT 12 
110 

TEST3:ITERATI0NS=    10 
START TIME= 19:16:13.01 
END      TIME= 19:18;07.«t8 
RESPONSE TIME=      11«».U7 

TEST3:  PLEASE ENTER N IN FORMAT 12 
02 

TEST3:ITERATI0NS=     2 
STATUT TIME= 19:18:25.23 
END      TIME= 19:18:31». 12 
RESPONSE TIHE= 8.89 

TEST3:  PLEASE ENTER N IN FORMAT 12 
•00 

TEST3 NOW COMPLETE.OYOU ARE IN COWAND MODE 
CHCIW STOP 

•FINAL 
CZUHW001 AT 19:19:00: 29 USERS, Ik TTYVS, 15 27U1VS, 0 1050VS 
CZUHW001 AT 19:19:31: 29 USERS, II» TTYVS, 15 27klVS, 0 1050VS 
B007      CPU TIME 00:01:21».77     CONNECT TIME 00:16:35      TIME 19:19     DATE Ok/07/70 
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APPENDIX E 

LISTING OF ALLOCATION MODEL 

üifU'i.A ^rniii 
iMTFrnn  r.'PFX^rn^cnn'T^^'T^sTAPTi-r t'/^c!'rTnMrpr. 
If.'TFnriP   GNAP/MAXJ0ns#MAXf1FnilFf>T5/MtJS«rr><;   nr^|rn. 

RtAL   STATTlHE#STATF|NTFnPM /^rr 
REAL   FSR, L^lAV, 1.02 W, LOUPRSPO^S11 

PFAL   f'ARK3/IOinLE/IOPFST; 
REAL   QlAV#n2AV,01^02 ,MAP.KI»#fMRK5 

TEPP^Ol'T; 

REAL  ARRAY  PATAC 1:21,1 J2 ), I.MT1 (1 :?0)/|NT2 (1 J20 ); 
fNTEfiER  ARRAY  TRANS ITP IRTd :2 D^FFVI RPp!«;?(1:21)   STAT^PPHRM .91 y, 
IMTEfiER ARRAY   IMT5(1:20); -   v/M   . Ki.tn, 
"FT  APPAY  CPOUEUE(l:2)/IOnUFü':(l{2)! 
"JF.AL   KARR/ESLAM<nELTl/Tl/-tPF/

Pr
)PF! 

RFAL   LAM; 
FLEMEMT  P^orFSSOR. I(^YS/1A r« 
FLFfiFfiT  UPPATE^nF^USEPS; 
BOOLEAN   INITIALIZE; 

PPOCFmiRE  RESET; 
REfilN 

i:!ITIALIZF:=FALSF; 
COUNT:«0; 
MAPK:=.MAPK2:=rAP;<3:=',AP»'./t J-MAPKS :"STATTIMP:»TI f'P • 
r>iif,s:=siiMSS:=rii)MC:=^i,r,rc:=.si'',pr,«-si"'r,-=:^M"pp.-o n- 
LniAV:=Ln2AV:=0.0;      ' 
STATEINTEnRALj«CPinLF:"01AV:»n2Ay:-(nini r.=r)  p. 
FOP  K:=l  STEP  1  UNTIL  2i   no •   ■•   / 

REG IN 
TRANS I TO IST(K):«SERVICEP IST(K):«STATPPPO^(K):«0• 
nATACr^D^PATACK^):»!)^; *     ' 
Ei'P; 

Ff;n OF ppocEnup'- RESET; 
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ACTIVITY   IJSER(PRinPITY)   ;    IMTrCFP   pn|OP|TY- 
REG Ifl ' 

RFA!.   AnPIVALTIf!R/5FPVICFTIf'F/LSllf'P/F>'ITPPP'',Tljr'KTIMr   rvri Fl- 
ir.'TKr.ER   INTERACTIONS,NUHPFOUFSTSj 
ROOLEAN   PASS1; 
TI!INKTIf'Ej«N'EGEXP(1.0/30.0,SFFn); 
FXITPROR: = IF nMFnrM(n.onou..n/s»-^n) (en   75 T«T"    S 

FLSF   1.0/26.0; 
IJUSEPSj-flDSFRS  *  1; 
NIIHPEOUFSTSrHmiFnR^O.n^O.f^SFFn)   +   1   o- 
lll:SERVICFTIf1E:=rYCLEl:=0.0; *   ' 

PASS1:=TPI'F; 
APRIVALTÜ'F^TIf'F; 
HISTn(STATFPROB/ir!T3/ST/»TF/(TirT-fAPi()*100   0). 
ACCUrUSTATEINTEGRAL^MAPK.STATiM); 
ACCUf^OlAV/IAPICU^,!,!); 
'JAPPrsflARP+l.O; 
IF   IPLFCPROCFSSOP)   THEM ACTIVATE   PPPPFSCOD  /^rrFn  nipppfT- 
l!AIT(npplJFi;r(PP.|ORITY)); Ai,    iHMf-   T, 

TEMP: =T I f'F -APR IVA LT I f'F; 
LSIJMR:=LSIJrR+TFMP; 
SUfT:=r>UMP+TEf<P; 
SIJMPR:=SUr,PP+TEf:P*TFflP; 
SUMSl-SUM«+SFRV|CETIMF; 
SUf'SG:=SMMS5+SFRVICFTIMF*SFnvirrTir,r- 
SUMCs«SUMC+CYPLEl; 
sur'cc:=r.iiricr+rYCLFi*rYci Elj 
SUMPS :=SIJf'RS+TEMP*SFPVICFT IMF; 
I'lSTOCTPAMSITDIST.inTl^TFMP,!); 
MISTn(SERVICFPIST/ir

,T2/SFRV|rrT|f'P/l)- 
HISTO(GTATEPROP, I MTJ.GTATE, (Tlf'F-MAPK)*100   n). 
IHnEX:=5EPVICET1*^*10.0+1.0; 
ACCUMC5TATFIMTEPRAL,MARK,STATE,-1) ; 
ACCUM(02AV/f1APK5/02,-1 ); 
ir;nEX: = iF M-DEX LFP 21 TI'EK' irjf>Fx c|Sc 21- 
nATA(ir:nFX/l):=PATA(IHPFX/l) + TFnP; 
nATA(irfnEX/2):=nATA(ir!PFX/2) + 1.0; 
C0UHTl"C0UNT+l; 
INTERACT I nfJS: = irv!TERArTIPf'S   +   1; 
IF   IflTFRACTIPNS   LSS   NUMPEOUFSTS   TMEN 

RECIf; 
HOLDCUNIFORMtO.O^.O^THINKTIMF^SFFn))! 
00  TO  Ul; tut 
END; 

r,'USERS:=-fJUSFPS   -   1; 
IF   (DENIEH  GEO  1)  Af'P   (NDSFRS   Lr^  MAXCUSTOMFPR) 

THEN   REACTIVATE   OENUSEPS   AFTFP   CUPPFMT; 
END   OF   ACTIVITY   USER; 
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ACTIVITY ESTIPATOP; 
BEG IN 
REAL  Ul^lia/UERNKW, LAMNBI.FSMl^FSMa; 
F.l:HSLAH: = (ESLAM*Tl+r.'APP)/(Tl*n^|.Tl); 

rSf11: = (FSMl*Tl+niAV-LOlAV)/(Tl   +   HFLTl); 
FSM2: = (FSfi2*Tl+02AV-Ln2AV)/(Tl  +   nRi.Tl); 
ESR:=   f-SMl  +   ESM2; 
FSPF:=(ESPF*Tl+nPF)/(Tl+nELTl); 
IF (Enn LSS LnwPFSPorsF) äKH (rmspps GFP MAyruninrFPs) THFM 

nFGIM 
Ul^FSPF/^SMl   +   F.5PF; 
U2:=FSPF/FSM2   +   FSPF; 
LAMMEWt»   (NUSFRS   +   l)*ESPF/MliSFPP; 
ERNEWJ«LAMNEW*(1.0/(U1-LAMNEV')   +1.0/(IJ2-L^MMFV/)); 
IF   (EPflEW   LSS   HIGHPFSPOMSF)   Arn   (prnpn  Qgn   J)   J\W 
BEGIN 

nEf!IEP:=nEf!|Fn-l; 
f1AXCIISTOMFPS:=fiAXGIiSTOfiFPS   +   1; 
ACTIVATE   NEW  USEP(l)   AFTEP  ClinpFMT; 

END; 
END 
ELSE   IF   (ESR  GFO  HI GHRFSPOr^F)   ANP   (MAXRUSTOMFRS   G^o   rn^PPS) 

TI'EN MAXCIISTOMERS   }«MAXCUSTC"PRS-l? 
WR I TE(NUSFRS, MAXCUranflFPS, ESP, ESLAM, FSPF, Ul, 112); 
NARR:=NPF:=0.0; 
L01AV:=niAV; 
La2AV:=02AV; 
REACTIVATE   CURRENT  AT  TIME   +   OEI.TI   PR I OP; 
GO  TO  El; 

END  OF  ACTIVITY  ESTIMATOR; 

ACTIVITY   GENERATOR; 
BEGIN 
GltHOLPaiEGEXPUAM^EEn)); 

IF   NUSERS  GFO  MAXCHSTOMEPS   THEN 
BEGIN 

nEr'IE.n:=PFNIEP + l; 
GO TO Gl; 

END; 
ACTIVATE NEW U'JFR(l) AFTER CURRENT; 
GO TO Gl; 

END OF ACTIVITY GENERATOR; 

..^^-.^.w.^.     '' ■]i'-l;iitJi]muCT - 'Hi 
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ACTIVITY   CnriPUTFRj 
BEGIN 
RFAL   OVERMEAP^IJAMTA; 

ClrF.XTRACT   Fl RST(CPOlJFUF( 1))   WK'FN  LI^FP   PO 
BFHIN 

C2:nVFPF!FAn: = .05   +   STATF*.0n^; 
IF  PASSI   THEN 

BFCIN 
CYCLFlr^TIMF-ARRIVALTIf'F+nVFPHPAp. 
PASS1:=FALSF; 
END; 

nuANTA^uNiFnprtn.oonoi, .I/SEEP); 
SERVICFTIMEr-SERVICFTinF+nUANTA; 
HOLP(OVERMEAP+nUANTA); 
INCLDPECUSER, I OOI'FUF( PP I PR ITY)) t 
ACCUMCOIAV^IAPKI», 01,-1); 
ACCUM(02AV/MARK5/02/l); 
IF IPLE(IOSYS) THEN ACTIVATE IOS/S AFTFP CUPPFNT; 
END 

OTHERWISE REOIN 
ACCUM(CPIPLF!/MARK2/CPPFST/1.0); 
PASSIVATF; 
ACrUf^(CPIPLF/MARK2/rPP'

rST/-1.0); 
ENP; 

00 TO Cl; 
ENP OF ACTIVITY COMPUTER; 

ACTIVITY IOPROCESSOP; 
RFC IN 
REAL IOSERVICF; 
101: EXTRACT FlRST(IOOUEUF(1)) WHEN USER PP 

REG IN 
NPF:=NPF+1; 
lOSERVICFc-UNIFOPMCO.O, .2,SEEP); 
HOVPdOSERVICE); 
TEMP}«UNIPORM(0.0#1.0,SEED); 
IF TEMP LFO EXITPPOB THPN ACTIVATE USER AFT^R CMPPENT 

ELSE BEGIN 
INCLUPFOlSEP^PniJEUECPPIPRITY)); 
ACC'IM(n2AV.MARKS, 02,-1); 
ACCUMCCIAV, MARK»» / PI, 1); 
IF   IPLE(PPOCESSPR)   THEN 

ACTIVATE   PROCESSPP   AFTER   CIIPRFNT; 
ENP; 

ENP 
OTHERWISE   BEGIN 

ACCUM( lOIPUVIARIO, lOREST^.O^- 
PASSIVATE; 
ACCUfi(IOIPLF/MARK3/IOPFr>T/-1.0); 
Ef!P; 

GO  TO   101; 
ENP OF ACTIVITY IOPROCFSSOR; 
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PFAH   (SEEP^TAPTUP.MAXPFCUFSTS); 

LAMI'1!O/1O!:S;/SFFP' '     5TAPT^P,'ST^T,,^ 'MAXPF^rST^^MAXprriirSTS); 
LOWPFSPONSF:«3.25; 
li|fif:PL:SPONSC:»3.5; 
MAXCUSTOflFRS:»   30; 
INITIALIZE:=TRUF; 
~1:=50.0; 
nFLTl:=25.0; 
FOR  K: = l  STFP   1   IIMTIL  20   On 

RFGIN 
INT1(K):=1.5*K; 
IMT2(K):=.1*K; 
INT3(K):=K-1; 
Ff.'P; 

PROCESSOR   :=   NFl?  COMPUTER; 
IOSYS:=NFW   IOPROCFSSOR; 
UPDATE J «NEW ESTIf'ATOR; 
OFfJUSFRS:=NEW fiFK'FRATOR; 
ACTIVATE  UPDATE   AT  TIMF   +nrLT1   +   T1. 
ACTIVATE  GENUSEPS  AT  TIMF   +100- 
MAIN:=CUPRFNT; 
FOR   K: = l   STFP   1   IJfITIL   20   nn 

ACTIVATE   MRW  USF.R(l)   AFTF^   niPRPKT- 
FOR   SNAP:*   1   STEP   1  Uf!TII    16   nn 
HEG If.' 
IIOLnUOO.O); 
ACCUM(STATE INTEGPAL/IAPK, STATF,0) • 
ACCUfUCP|r)lB/MARK2/CPRFST/0.0); ' 
ACCUMdOIPLE.nARKS, lOPFST.O.O); 
WR,TFCOUrm;   AT  R"r,  C0MPLFT,0fJ   'S»,TIM!:,'   NUMPÜP OF  TA^K?  pnorps^P   \S*, 

WRITEC   CURRENT  STATE   IS%STATF,'^VPRACF  STATE   l<" 
STATEIMTEGPAL/CTIMF-STATTI'T)); ' 

TEMP:=SUMS/COUf;T; 
OUT:=S0RT(SUMSS/COUMT-TFMP*TEMP)- 
l/RITEC   SAMPLE  AVERACF  AHP  SP  OF'SFRVICF   TI'^F«;   APE«   TFf'P  OCT^ • 
TEMPi-(COUNT*SUMRS.SUMR*SUMS)/(rnuriT^ 
OUT:=(SUMR-TEMP*SUM5)/Cn!;\'T; 

TF^i^lsuMC/cnurir EST,MATR 0F SLnpr AMn «^PCFPT APP.^^OMT); 

OUT:=SnRT(SUMCC/COII^!T-TFMp*TFMf,). 

OllT:=snRT(SUf^PR/Cni!f!T-TF»in*xrfiip). 
;;RITF(' SAMPLE AVERAGE AW SD OF^RFSPO^F TI^-^ APF« TFMP OMT). 

RITE        PPORARILITY   PROCFSSnR   |S   ,pLF   I S', CrnLr^T, rJ.^'^V j^ n . 
WPITE(      PPOHAniLITY   IOSYSTFM   IS   mLF   \^   ]ni^r/,jllr.~rlrr..rA

)' 
'./PITFC   AVERAGE   MUMPFR   If!   SYSTEM   1   AfP   /AP^   riA^(TM I^TATT  »M n2AV/(TIME-STATTIMF)); .^^/(Tl      -STATT|Mr)# 

'/riTE(' TIT TA^LE PISPLAYS RFSPOfSF Al A FUMPTinM nc qrrpv.rpM. 
WPITRC IMTFRVAL'.'AVFPAfP n» »Mr.Mnrp or p0|„:'M. 3 ' ); 

FOR   K:=l  STFP   1  UMTIL   21   Pn )' 
REOIN 

onT:=K)l0-A™K/2)   rF0   1•0   TVEl'  il/rA(fc''1>/n^^"^)   pfrr  0.0; 
WRITE(nUT,TFMP,nATA(K,?)); 
END; 

RESET; 
FflP; 
Ef.'n   OF   SIMULA   RLOCK; 
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